In Pursuit of New Physics with B_s Mesons Rob Knegjens (Nikhef)

R. Fleischer and R. K, Eur. Phys. J. C 71, 1532 (2011)

Rob Knegjens (Nikhef)

February 14, 2011 1 / 10

Introducing B Meson Physics

Mesons are quark-anti-quark bound states

- ► B variety contain the heavy b quark ⇒ decays in many different ways
- Precision measurements probe quark mixing → indirect signals of New Physics?
- $B^0_d \rightarrow$ already studied at *B*-factories
- Heavier B_s^0 will be studied (after Tevatron) by LHCb

Quark Mixing

 In the Standard Model (SM) quark mixing described by the Cabibbo-Kobayashi-Maskawa matrix Û

• Charge-Parity (CP) symmetry is violated in nature if \hat{V} is complex

Quark Mixing

 In the Standard Model (SM) quark mixing described by the Cabibbo-Kobayashi-Maskawa matrix Û

- Charge-Parity (CP) symmetry is violated in nature if \hat{V} is complex
- This CP violation can be depicted by unitarity conditions on the complex plane

New Physics in B_s^0 mixing

Quark mixing in turn means that B_s mesons mix

▶ In Standard Model amplitude is supressed and the CP violating phase is tiny $\phi_s = -2^\circ$

New Physics in B_s^0 mixing

• Quark mixing in turn means that B_s mesons mix

- ▶ In Standard Model amplitude is supressed and the CP violating phase is tiny $\phi_s = -2^\circ$
- ► This makes it very sensitive to New Physics appearing in the loop
 - 4th generation fermions
 - Z' bosons
 - Sparticles

The $B_s \rightarrow K^+ K^-$ decay

Both tree and penguin contributions:

$$\operatorname{Ampl}(B_s \to K^+ K^-) \propto \epsilon \ \mathcal{A}_1 e^{i\gamma} + \mathcal{A}_2 \ \mathbf{1}$$

• Including B_s mixing, the CP violating observable:

$$\mathcal{O}_{\rm CP} \equiv \frac{\Gamma(B_{\mathfrak{s}}(t) \to K^+ K^-) - \Gamma(\overline{B_{\mathfrak{s}}}(t) \to K^+ K^-)}{\Gamma(B_{\mathfrak{s}}(t) \to K^+ K^-) + \Gamma(\overline{B_{\mathfrak{s}}}(t) \to K^+ K^-)}$$

depends on: γ , $\phi_{\mathfrak{s}}$, $\mathcal{H} \equiv \frac{\mathcal{A}_2}{\mathcal{A}_1} \in \mathbb{C}$

The $B_s \rightarrow K^+ K^-$ decay

Both tree and penguin contributions:

$$\operatorname{Ampl}(B_s \to K^+ K^-) \propto \epsilon \ \mathcal{A}_1 e^{i\gamma} + \mathcal{A}_2 \ \mathbf{1}$$

• Including B_s mixing, the CP violating observable:

$$\mathcal{O}_{\rm CP} \equiv \frac{\Gamma(B_{\mathfrak{s}}(t) \to K^+ K^-) - \Gamma(\overline{B_{\mathfrak{s}}}(t) \to K^+ K^-)}{\Gamma(B_{\mathfrak{s}}(t) \to K^+ K^-) + \Gamma(\overline{B_{\mathfrak{s}}}(t) \to K^+ K^-)}$$

depends on: γ , $\phi_{\mathfrak{s}}$, $\mathcal{H} \equiv \frac{\mathcal{A}_2}{\mathcal{A}_1} \in \mathbb{C}$

But H has non-pertubative QCD corrections...

Rob Knegjens (Nikhef)

Solution: *U*-spin flavour symmetry

- ► U-spin: SU(2) subgroup of SU(3) strong flavour symmetry that relates d and s quarks
- ▶ Analagous to iso-spin relation between *u* and *d* quarks

Solution: U-spin flavour symmetry

- ► U-spin: SU(2) subgroup of SU(3) strong flavour symmetry that relates d and s quarks
- Analagous to iso-spin relation between u and d quarks

$$\operatorname{Ampl} \propto e^{i\gamma} + \frac{1}{\epsilon} \mathcal{H} \qquad \qquad \operatorname{Ampl} \propto e^{i\gamma} - \mathcal{H}'$$

• Exact U-spin symmetry $\implies \mathcal{H} = \mathcal{H}'$

Rob Knegjens (Nikhef)

February 14, 2011 6 / 10

Determining γ with U-spin symmetry

• Let $\mathcal{H} = de^{i\theta}$ and $\mathcal{H}' = d'e^{i\theta'}$

Already measured	To be measured by LHCb
$B_d \rightarrow \pi^+ \pi^-$ mixing ind. CPV	$B_s \rightarrow K^+ K^-$ mixing ind. CPV
$ ightarrow oldsymbol{\gamma}, oldsymbol{d}', heta'$	$ ightarrow \gamma, \phi_{s}, oldsymbol{d}, heta$
$B_d o \pi^+ \pi^-$ direct CPV	$B_s \to K^+ K^-$ direct CPV
$ ightarrow oldsymbol{\gamma}, oldsymbol{d}', heta'$	$ ightarrow oldsymbol{\gamma}, oldsymbol{d}, heta$
$\overline{K \propto rac{\mathrm{Br}(B_s o K^+ K^-)}{\mathrm{Br}(B_d o \pi^+ \pi^-)}} o \gamma, d', heta', d, heta$	

• Assuming U-spin symmetry \implies 3 unknowns, 3 constraints!

Determining γ with U-spin symmetry

• Combining $\gamma - d$ contours gives an intersection:

Find good agreement with fits of CKM matrix (CKMfitter, UTfit):

$$\gamma = (68.3^{+4.9}_{-5.7}|_{\text{input}-3.7}|_{U-\text{spin}})^{\circ},$$

In Pursuit of New Physics

• Current data with *U*-spin symmetry gives the following predictions for $B_s \rightarrow K^+ K^-$:

Mixing induced CP asymmetry

Conclusion

► We eagerly await LHCb data

LHCb Event Display

Backup: Measurements of ϕ_s

▶ CDF/D0 at the Tevatron have already measured a deviation of sin ϕ_s from the SM through the $B_s \rightarrow J/\psi\phi$ channel

Backup: The Unitarity Triangle

Backup: U-spin error

Backup: Clean γ Extraction

- The last observable to be measured will be the direct CP asymmetry.
- It will allow a theoretically clean extraction of γ and a U-spin consistency check:

