B_s effective lifetimes:

phenomenology with a non-zero decay width difference

B_s decay width difference

$$\Delta\Gamma_{s}\equiv\Gamma_{\rm L}-\Gamma_{\rm H}$$

or

$$\textbf{y_s} \equiv \frac{\Gamma_{\rm L} - \Gamma_{\rm H}}{\Gamma_{\rm L} + \Gamma_{\rm H}}$$

Standard Model:

$$\left. \textbf{y_s} \right|_{\rm SM} = \left\{ \begin{array}{l} 0.067 \pm 0.016 \\ 0.074 \pm 0.007 \end{array} \right.$$

A. Lenz, U. Nierste, arXiv:1102.4274

L. Silvestrini, Beauty 2013

$$\left| \left. \boldsymbol{y_s} \right|_{\mathrm{LHCb}} = 0.075 \pm 0.012$$

LHCb collaboration, arXiv:1304.2600

LHCb
$$B_s \rightarrow J/\psi \phi$$
 analysis :

Untagged decay rates

$$\langle \Gamma(B_s(t) \to f) \rangle = rac{1}{N_{B_s}} rac{dN_e(B_s \to f)}{dt} = \dots$$

 $\Gamma(B^0_s(t) \to f) + \Gamma(\bar{B}^0_s(t) \to f) \qquad \qquad \Gamma(B_{s,H} \to f) e^{-\Gamma_H t} + \Gamma(B_{s,L} \to f) e^{-\Gamma_L t}$

$$\langle \Gamma_f \rangle = \left(\Gamma(B_{s,\mathrm{H}} \to f) + \Gamma(B_{s,\mathrm{L}} \to f) \right) e^{-t/\tau_{B_s}} \left\{ \cosh\left(y_s t/\tau_{B_s}\right) + \mathcal{A}_{\Delta\Gamma}^f \sinh\left(y_s t/\tau_{B_s}\right) \right\}$$
$$\left[\mathcal{A}_{\Delta\Gamma}^f = \frac{\Gamma(B_{s,\mathrm{H}} \to f) - \Gamma(B_{s,\mathrm{L}} \to f)}{\Gamma(B_{s,\mathrm{H}} \to f) + \Gamma(B_{s,\mathrm{L}} \to f)} \right] \qquad \left(\text{a.k.a } D_f = \frac{2\operatorname{Re}\lambda_f}{1 + |\lambda_f|^2} \right)$$

Time-integrated untagged rate

Experiment measures:

$$\overline{\mathrm{BR}}(B_s \to f) \equiv \frac{1}{2} \int \langle \Gamma(B_s(t) \to f) \, dt$$
$$= \frac{1}{2} \left[\frac{\Gamma(B_{s,\mathrm{H}} \to f)}{\Gamma_{\mathrm{H}}} + \frac{\Gamma(B_{s,\mathrm{L}} \to f)}{\Gamma_{\mathrm{L}}} \right]$$

Theoretical calculation in flavor basis:

$$\Gamma(B^0_s o f) + \Gamma(\bar{B}^0_s o f) = \langle \Gamma(B_s(t) o f) \rangle |_{t=0}$$

$$BR(B_{s} \to f) \equiv \frac{\langle \Gamma(B_{s}(t) \to f) \rangle|_{t=0}}{\frac{1}{2} (\Gamma_{H} + \Gamma_{L})} = \frac{1}{2} \left[\frac{\Gamma(B_{s,H} \to f)}{\frac{1}{2} (\Gamma_{H} + \Gamma_{L})} + \frac{\Gamma(B_{s,L} \to f)}{\frac{1}{2} (\Gamma_{H} + \Gamma_{L})} \right]$$

Dictionary :
$$\overline{BR}(B_{s} \to f) = BR(B_{s} \to f) \left[\frac{1 + y_{s} \mathcal{A}_{\Delta\Gamma}^{f}}{1 - y_{s}^{2}} \right]$$

K. Bruyn, R. Fleischer, RK, P. Koppenburg, M. Merk, N. Tuning, Phys.Rev.D 86 (2012)

 $\mathcal{A}^{f}_{\Delta\Gamma}$: mass eigenstate rate asymmetry

• Final state dependent, sensitive to New Physics

Consider:
$$B_s \rightarrow f$$
 with $C\mathcal{P}|f\rangle = \eta_f|f\rangle$
 $B_s^0 - \overline{B}_s^0$ Mixing: Decay Mode:
 ϕ_s $\Delta \phi_f$, C_f (direct CPV)
 B_s Φ_{f} , C_f (direct CPV)

Tagged CP observable : $\boldsymbol{S}_{f} = \eta_{f} \sqrt{1 - C_{f}^{2} \sin(\phi_{s} + \Delta \phi_{f})}$

$$\mathcal{A}^{f}_{\Delta\Gamma} = -\eta_{f} \ \sqrt{1-\mathcal{C}^{2}_{f}} \ \cos(\phi_{s}+\Delta\phi_{f})$$

Probe NP with untagged time-dependent measurements?

The Effective Lifetime

Approximate untagged rate $\langle \Gamma_f \rangle$ with single exponential $\frac{1}{\tau_f} e^{-t/\tau_f}$

Maximum likelihood fit gives:

$$\tau_{f} = \frac{\int_{0}^{\infty} t \langle \Gamma_{f} \rangle dt}{\int_{0}^{\infty} \langle \Gamma_{f} \rangle dt}$$
$$= \frac{\tau_{B_{s}}}{1 - y_{s}^{2}} \left(\frac{1 + 2 \mathcal{A}_{\Delta\Gamma}^{f} y_{s} + y_{s}^{2}}{1 + \mathcal{A}_{\Delta\Gamma}^{f} y_{s}} \right)$$

Recover theoretical BR:

$$BR(B_s \to f) = \underbrace{\left[2 - (1 - y_s^2) \frac{\tau_f}{\tau_{B_s}}\right] \overline{BR}(B_s \to f)}_{\text{all measurable quantities}}$$

Lifetime contours in the $\phi_s - \Delta \Gamma_s$ plane

$$\mathcal{CP}|f\rangle = \eta_f|f\rangle \implies \mathcal{A}_{\Delta\Gamma}^f = -\eta_f \sqrt{1 - C_f^2} \cos(\phi_s + \Delta\phi_f)$$

$$\tau_{f} = \frac{\tau_{B_{s}}}{1 - y_{s}^{2}} \left(\frac{1 + 2 \mathcal{A}_{\Delta\Gamma}^{f} y_{s} + y_{s}^{2}}{1 + \mathcal{A}_{\Delta\Gamma}^{f} y_{s}} \right) = \text{function}(\Delta\Gamma_{s}, \phi_{s} + \Delta\phi_{f}, C_{f})$$

Assuming:

$$\Delta\phi_f=0, \ C_f=0$$

$$\mathcal{A}_{\Delta\Gamma}^{f} = \begin{cases} -\cos\phi_{s} & : & f_{\text{even}} \\ +\cos\phi_{s} & : & f_{\text{odd}} \end{cases}$$

Lifetime contours in the $\phi_s - \Delta \Gamma_s$ plane $\tau(B_s \to f) = \text{function} \left(\Delta \Gamma_s, \phi_s + \Delta \phi_f, C_f \right)$

• **CP Even** :
$$\tau(B_s \to K^+ K^-)$$
 $\Delta \phi_{K^+ K^-} = -\left(10.5^{+3.1}_{-2.8}\right)^\circ, \quad C_{K^+ K^-} = 0.09$

LHCb, Phys.Lett. B716 (2012) 393-400; R. Fleischer, RK, Eur.Phys.J. C71 (2011) 1532

• **CP Odd** :
$$\tau(B_s \to J/\psi f_0(980)) \mid \Delta \phi_{J/\psi f_0} \in [-3^\circ, 3^\circ], \quad C_{J/\psi f_0} \le 0.05$$

LHCb, Phys.Rev.Lett. 109 (2012) 152002; R. Fleischer, RK, G. Ricciardi, Eur.Phys.J. C71 (2011) 1832

R. Fleischer and RK, Eur.Phys.J. C71 (2011) 1532; RK, C12-06-11.2, arXiv:1209.3206

Comparison with tagged measurements

Full tagged $B_s \rightarrow J/\psi \phi$ analysis:

Upcoming *untagged time-dependent* measurements?

The Rare Decay $B_s \rightarrow \mu^+ \mu^-$

$$\overline{\mathrm{BR}}(B_s \to \mu^+ \mu^-) = \begin{cases} (2.9^{+1.1}_{-1.0}) \times 10^{-9} & \mathrm{LHCb} \\ (3.0^{+1.0}_{-0.9}) \times 10^{-9} & \mathrm{CMS} \end{cases} = (2.9 \pm 0.7) \times 10^{-9}$$

LHCb: Phys.Rev.Lett. 111 (2013) 101805, CMS: Phys.Rev.Lett. 111 (2013) 101804

$$\overline{R} \equiv \frac{\overline{\mathrm{BR}}(B_{\mathrm{s}} \to \mu^{+}\mu^{-})}{\overline{\mathrm{BR}}(B_{\mathrm{s}} \to \mu^{+}\mu^{-})_{\mathrm{SM}}}, \qquad \overline{R}_{\mathrm{LHCb}} = 0.83 \pm 0.20, \qquad \overline{R}_{\mathrm{SM}} = 1$$

K. Bruyn, R. Fleischer, RK, P. Koppenburg, M. Merk, A. Pellegrino, N. Tuning, Phys.Rev.Lett 109 (2012)

 $B_s
ightarrow \mu^+ \mu^-$ beyond the Standard Model

$$\mathcal{H}_{ ext{eff}} \propto \sum_{i}^{\{10,S,P\}} \mathcal{C}_i \, \mathcal{O}_i + \mathcal{C}_i' \, \mathcal{O}_i'$$

 $\mathcal{O}_{10} = (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\mu}\gamma^{\mu}\gamma_{5}\mu)$ $\mathcal{O}_{S} = (\bar{s}P_{R}b)(\bar{\mu}\mu)$ $\mathcal{O}_{\mathcal{P}} = (\bar{s}P_{R}b)(\bar{\mu}\gamma_{5}\mu)$

(and $P_L \leftrightarrow P_R$ for \mathcal{O}')

Standard Model: only $\mathcal{O}_{10} \implies$ only $\mathcal{B}_{s,\mathrm{H}}
ightarrow \mu^+ \mu^-$

Beyond the SM: non-vanishing $B_{s,L} \rightarrow \mu^+ \mu^-$?

Probe **NP** with :
$$\mathcal{A}_{\Delta\Gamma}^{\mu\mu} \equiv \frac{\Gamma(B_{s,\mathrm{H}} \to \mu^+\mu^-) - \Gamma(B_{s,\mathrm{L}} \to \mu^+\mu^-)}{\Gamma(B_{s,\mathrm{H}} \to \mu^+\mu^-) + \Gamma(B_{s,\mathrm{L}} \to \mu^+\mu^-)}$$

e.g. with $B_s \rightarrow \mu^+ \mu^-$ Effective Lifetime

$B_s ightarrow \mu^+ \mu^-$ untagged observables

0.0

0.4 0.6 0.8 1.0

(2013) 77

1.2 1.4 1.6

|P|

New scalar and pseudoscalar operators on same footing

Scenario C:
$$P = 1 + \tilde{P}, \ \boldsymbol{S} = \pm \boldsymbol{\tilde{P}}$$

Specific models in the \overline{R} - $\mathcal{A}^{\mu\mu}_{\Delta\Gamma}$ parameter space

$$X \in \{ Z', H^0, A^0, H^0 + A^0 \},$$

 $M_X = 1 \,\mathrm{TeV}$

- B_s mixing $(\Delta M_s, \phi_s)$ constrains quark couplings
- Lepton couplings left free

A.J. Buras, R. Fleischer, J. Girrbach, RK, JHEP 1307 (2013) 77

A.J. Buras, F. De Fazio, J. Girrbach, RK, M. Nagai, JHEP 1306 (2013) 111

Very possible that **NP hidden** within $\overline{BR}(B_s \rightarrow \mu\mu)$ bounds. **Expose** with time-dependent measurement!

 $B_s
ightarrow \mu^+ \mu^-$ tagged analysis

Eventually also tagged measurement:

$$\begin{split} &\frac{\Gamma(B_s^0(t) \to \mu^+\mu^-) - \Gamma(\bar{B}_s^0(t) \to \mu^+\mu^-)}{\Gamma(B_s^0(t) \to \mu^+\mu^-) + \Gamma(\bar{B}_s^0(t) \to \mu^+\mu^-)} \\ &= \frac{\mathcal{S}_{\mu\mu} \mathrm{sin}(\Delta M_s t)}{\mathrm{cosh}(y_s t/\tau_{B_s}) + \mathcal{A}_{\mu\mu}^{\mu\mu} \mathrm{sinh}(y_s t/\tau_{B_s})}. \end{split}$$

• $S_{\mu\mu}$ indepedent if scalar operators:

$$egin{aligned} & \left| oldsymbol{\mathcal{A}}^{oldsymbol{\mu}\mu}_{oldsymbol{\Delta}\mathsf{\Gamma}}
ight|^2 + \left| oldsymbol{\mathcal{S}}_{oldsymbol{\mu}\mu}
ight|^2 \ & = 1 - \left[rac{2|P||oldsymbol{S}|\cos(arphi_P - arphi_S)}{|P|^2 + |oldsymbol{S}|^2}
ight]^2 \end{aligned}$$

•
$$\mathcal{S}_{\mu\mu}$$
 sensitive to small CP phases

Summary

$$\Gamma_{\rm L} \neq \Gamma_{\rm H}$$
 implies:

 Mass-eigenstate rate asymmetries (A^f_{ΔΓ}) from time-dependent untagged measurements

e.g. effective lifetimes

• Branching ratio dictionary:

$$\mathrm{BR}(B_s \to f) \quad \stackrel{\mathcal{A}^f_{\Delta\Gamma}/\tau_f}{\longleftrightarrow} \quad \overline{\mathrm{BR}}(B_s \to f)$$

- $B_s^0 \bar{B}_s^0$ mixing constraints from effective lifetimes (τ_{f_+}, τ_{f_-})
- New topic for LHC upgrade: effective lifetime for $B_s \rightarrow \mu^+ \mu^-$

Backup Slides

Controlling the CP Even Decay Mode

• Use *U*-spin flavour symmetry (subgroup $SU(3)_F$):

R. Fleischer, Phys.Lett.B 459 (1999) 306

interchange $s \leftrightarrow d$ quarks

Related to $B_d \to \pi^+ \pi^-$

Extract CP violating phase:

$$\gamma = \left(68^{+5}_{-6}\big|_{\mathrm{input}}^{+5}\big|_{\mathrm{U-spin}}\right)^{\circ} = (68 \pm 7)^{\circ}$$

R. Fleischer and RK, Eur.Phys.J. C71 (2011) 1532

Controlling the CP Odd Decay Mode

$$B_s \rightarrow J/\psi f_0(980)$$

Quark-antiquark

What is $f_0(980)$?

• Decay amplitudes may vary:

Controlling the CP Odd Decay Mode

• With SM CP violation and unknown decay amplitudes:

$$\Delta \phi_{J/\psi f_0} \in [-3^\circ, 3^\circ]$$
, $C_{J/\psi f_0} \lesssim 0.05$

• Proposed control channel: $B_d \rightarrow J/\psi f_0(980)$

$$\begin{array}{rll} \textbf{Predict}: & \mathrm{BR}(B_d \to J/\psi \ f_0; f_0 \to \pi^+\pi^-) \\ & \sim (1-3) \times 10^{-6} \times \begin{cases} \left[\frac{\tan \varphi_M}{\tan 35^\circ}\right]^2 & : & q\bar{q} \\ 1 & : & \mathrm{tetraquark} \end{cases} \end{array}$$

R. Fleischer, RK, G. Ricciardi, Eur.Phys.J. C71 (2011) 1832

So far:

$${
m BR}(B_d \to J/\psi \, f_0; f_0 \to \pi^+\pi^-)_{
m LHCb} < 1.1 imes 10^{-6} \ (90\% \ {
m C.L})$$

LHCb, Phys. Rev. D87 (2013) 052001

No scalar operators OR only new scalar operators

$$\Gamma(\boldsymbol{B}_{\boldsymbol{s},\mathbf{L}} \to \mu^+ \mu^-) \propto |\boldsymbol{P}|^2 \underbrace{\sin^2(\varphi_{\boldsymbol{P}} - \phi_{\boldsymbol{s}}^{\mathrm{NP}}/2)}_{\mathrm{scenario \ A}} + \underbrace{|\boldsymbol{S}|^2 \cos^2(\varphi_{\boldsymbol{s}} - \phi_{\boldsymbol{s}}^{\mathrm{NP}}/2)}_{\mathrm{scenario \ B}}$$

Scenario A:
$$S = 0$$

Scenario B: $S \neq 0$ (P = 1)

E.g: H^0 dominant (2HDM)

 $B_s
ightarrow \mu^+ \mu^-$ tagged analysis

Eventually also tagged measurement:

$$\begin{split} &\frac{\Gamma(B_s^0(t) \to \mu^+\mu^-) - \Gamma(\bar{B}_s^0(t) \to \mu^+\mu^-)}{\Gamma(B_s^0(t) \to \mu^+\mu^-) + \Gamma(\bar{B}_s^0(t) \to \mu^+\mu^-)} \\ &= \frac{\mathcal{S}_{\mu\mu} \mathrm{sin}(\Delta M_s t)}{\mathrm{cosh}(y_s t/\tau_{B_s}) + \mathcal{A}_{\mu\mu}^{\mu\mu} \mathrm{sinh}(y_s t/\tau_{B_s})}. \end{split}$$

• $S_{\mu\mu}$ indepedent if scalar operators:

$$egin{aligned} & \left| oldsymbol{\mathcal{A}}^{oldsymbol{\mu}\mu}_{oldsymbol{\Delta}\mathsf{\Gamma}}
ight|^2 + \left| oldsymbol{\mathcal{S}}_{oldsymbol{\mu}\mu}
ight|^2 \ & = 1 - \left[rac{2|P||oldsymbol{S}|\cos(arphi_P - arphi_S)}{|P|^2 + |oldsymbol{S}|^2}
ight]^2 \end{aligned}$$

•
$$\mathcal{S}_{\mu\mu}$$
 sensitive to small CP phases

Parameter space with $B_s \rightarrow \mu^+ \mu^-$ tagged analysis

Mass dependence of $\mathcal{A}^{\scriptscriptstyle f}_{\Delta\Gamma}$ in $\mathcal{H}^0 + \mathcal{A}^0$ model

Fitting an effective lifetime

$$f_{\rm true}(t) \equiv \frac{A(t) \langle \Gamma(t) \rangle}{\int_0^\infty A(t) \langle \Gamma(t) \rangle dt}, \qquad f_{\rm fit}(t;\tau) \equiv \frac{A(t) e^{-t/\tau}}{\int_0^\infty A(t) e^{-t/\tau} dt}$$

Minimise : $-\log L(\tau) = -n \int_0^\infty dt f_{\rm true}(t) \log [f_{\rm fit}(t;\tau)]$

$$\frac{\int_{0}^{\infty} t A(t) e^{-t/\tau} dt}{\int_{0}^{\infty} A(t) e^{-t/\tau} dt} = \frac{\int_{0}^{\infty} t A(t) \langle \Gamma(t) \rangle dt}{\int_{0}^{\infty} A(t) \langle \Gamma(t) \rangle dt}$$

$$\text{Limit that } A(t) = 1:$$

$$\tau = \frac{\int_{0}^{\infty} t \langle \Gamma(t) \rangle dt}{\int_{0}^{\infty} \langle \Gamma(t) \rangle dt} \equiv \tau_{\text{eff}},$$

$$\frac{\int_{0}^{\infty} t \langle \Gamma(t) \rangle dt}{\int_{0}^{\infty} \langle \Gamma(t) \rangle dt} \equiv \tau_{\text{eff}},$$

 y_s

Tagged analysis

The CP asymmetry:

$$\frac{\Gamma\left(B_{s}(t)\to f\right)-\Gamma(\bar{B}_{s}(t)\to f)}{\Gamma(B_{s}(t)\to f)+\Gamma(\bar{B}_{s}(t)\to f)}=\frac{C\cos(\Delta M_{s} t)+S\sin(\Delta M_{s} t)}{\cosh(\Delta\Gamma_{s} t)+\mathcal{A}_{\Delta\Gamma}\sinh(\Delta\Gamma_{s} t)}$$

Observables for $\mathcal{CP}|f\rangle=\eta\left|f\right\rangle$:

$$\lambda_{f} \equiv \frac{q}{p} \frac{A(\overline{B}_{s}^{0} \to f)}{A(B_{s}^{0} \to f)} = -\eta \ e^{-i\phi_{s}} \sqrt{\frac{1-C}{1+C}} \ e^{-i\Delta\phi}$$
$$\mathcal{A}_{\Delta\Gamma} + i S = \frac{2 \ \lambda_{f}}{1+|\lambda_{f}|^{2}} = \boxed{-\eta \ \sqrt{1-C^{2}} \ e^{-i(\phi_{s}+\Delta\phi)}}$$