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Chapter 1

Introduction

The starting date of this thesis research closely coincided with the first proton-proton
collisions at the Large Hadron Collider (LHC) at CERN1. At that time there was not yet
any evidence for the Higgs boson, and there was a strong hope that the LHC’s record
centre of mass energy of 7 TeV would reveal clear signals of so-called New Physics.
New Physics essentially refers to any phenomena that cannot be described by the so
far very successful Standard Model of particle physics, which is by now almost 40 years
old. It may be searched for by conjecturing specific new models, known as the top down
approach, or by studying deviations from the Standard Model in generic observables,
which is called the bottom up approach. An example of the top down approach is
the class of models based on weak scale supersymmetry, which can address a range of
Standard Model shortcomings, including the origin of dark matter [1], the naturalness
of the Higgs boson mass and the unification of forces [2, 3].

Several years on from the startup of the LHC, in July 2012 to be precise, the ATLAS
and CMS detectors at the LHC proudly reported the discovery of a Higgs-like particle
with a mass of 126 GeV [4, 5]. On the other hand, all direct searches for New Physics
to date have returned results compatible with the Standard Model. As a result, models
of New Physics, such as supersymmetry, now have a significantly constrained parameter
space and strict lower bounds for the masses of possible new particles [6, 7, 8]. This is
the status quo of what may be called the high energy frontier.

Equally important is the precision frontier, where New Physics is looked for indirectly
by precisely measuring the decays of well-understood particles to well-understood final
states. Particularly interesting are decays of meson particles, as these often involve
processes in which quarks change flavour via the weak force. In the Standard Model such
processes can violate Charge-Parity (CP) symmetry. The violation of this symmetry is
interesting in its own right, as well as a necessary condition to explain the matter–
antimatter asymmetry of the Universe [9]. In addition, when quarks with the same
charge change flavour, they do so via virtual loop interactions in which heavy new

1The starting date was on the 1st of February 2010 and the first proton-proton collisions took place
on March 30th that same year.
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2 CHAPTER 1. INTRODUCTION

particles can also participate. Thus, by measuring these processes very precisely, we can
discern the presence or absence of New Physics particles that are too heavy to have a
direct impact on the high energy frontier.

The violation of CP symmetry was first discovered by the observation of long-lived
neutral kaons decaying to two pions [10]. Besides from being an unexpected result, it
was, in hindsight, also a somewhat unlikely process to discover CP violation with, given
that the observed asymmetry is of the order 10−3. Much bigger effects, as it turns out,
occur in decays involving B mesons. To study the CP violation present in these decays,
the so-called B-factories BaBar, at SLAC, and Belle, at KEKB, were commissioned in
1999. These e+e− colliders operated primarily at the Υ(4S) resonance, allowing them

to produce over a billion pairs of B0
d–B

0

d and B+
u –B−u mesons. A key highlight of the

B-factory era was the measurement of a sizable CP-violating B0
d–B

0

d mixing phase with
a time-dependent analysis of the decay mode Bd → J/ψKS [11, 12]. On the whole, after
ten years of operation, the B-factories helped to establish a very consistent picture of
CP violation in the Standard Model. However, some corners of quark flavour mixing
were left unconstrained, in particular quark transitions to which the neutral Bs meson
system is sensitive.

Around the time the LHC started up, the properties of the neutral Bs meson system
were still largely undetermined, while existing determinations of its CP violating mixing
phase were causing excitement. Specifically, measurements of this phase by the Tevatron
detectors DØ and CDF were showing deviations from the Standard Model prediction
by two standard deviations [13]. Since then the LHC’s LHCb detector has considerably
sharpened this picture. As we will present in Chapter 3, the Bs mixing phase has
now been more accurately measured, and it appears to reside close to the Standard
Model prediction, already ruling out a smoking gun signal of New Physics. The same
holds true for other Bs observables that could have revealed a large New Physics signal,
such as the rare decay Bs → µ+µ− that we will discuss in more detail below. The
LHCb experiment has recently reported small hints of New Physics in the Bd meson
system, although these are far from conclusive. Namely, in the angular distribution of
the Bd → K∗µ+µ− decay [14, 15] and in an isospin relation involving the Bd → Kµ+µ−

decay [16].

With the status quo of the precision frontier delivering no clear cut signals of New
Physics either, we must await further precision from the LHC experiments. However, as
theorists, we should not wait by idly. If there are small signals of New Physics hidden
in future precision measurements, precise Standard Model predictions are required in
order to identify them. The most challenging aspect of improving these predictions is
due to the difficult hadronic nature of meson decays, which involve long-distance strong
interactions. To this end, we can make use of a well developed theoretical framework,
known as the Operator Product Expansion (OPE), which allows us to split short from
long distance contributions. In some cases the long distance contributions can be further
simplified with an approximation known as factorization. We will introduce both of these
theoretical tools in Chapter 2. Unfortunately, these tools alone are often not sufficient to
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factor out the presence of hadronic physics. Methods to directly compute the hadronic
amplitudes exist, such as lattice QCD or QCD sum rules, but the associated theoretical
uncertainties are still sizable. In this thesis we will chiefly attempt to deal with hadronic
physics by making use of the approximate flavour symmetries of QCD, as we will also
introduce in Chapter 2.

Our goal in this thesis is to develop and improve strategies for searching for New
Physics in the form of new sources of CP violation and modified flavour changing quark
couplings using the Bs meson system. We will mainly follow the bottom up approach,
which means that we apply a general, model-independent, parameterization to observ-
able processes that can be compared with Standard Model predictions. In essence this
involves puzzling together various related meson decay modes and their observables in
order to extract parameters, such as CP violating phases, while minimizing the theoreti-
cal uncertainty. Several of the strategies that we discuss complement more conventional
determinations of the same parameters. Overconstraining these parameters in this way
is crucial. Firstly, it combines analyses with different experimental systematics and
different theoretical uncertainties, thereby increasing our overall confidence in the final
result. And secondly, comparing the same result from two vastly different analyses may
reveal something unexpected. For example, if a parameter determined from processes
with only tree topologies differs from that extracted from a processes dominated by loop
topologies this could be an indication of heavy new particles contributing to the latter.

A particularly useful feature of the Bs meson system, in contrast to the Bd meson
system, is that its mass-eigenstates have a sizable lifetime difference, as we will explain
in Chapter 3. This makes it possible, from a time-dependent analysis, to distinguish the
relative decay rates of the two mass eigenstates to a specific final state i.e. to measure
a mass-eigenstate rate asymmetry. Such an analysis does not require so-called flavour
tagging, where an attempt is made to identify which flavour state the Bs meson is in
before it decays, and is thereby experimentally more efficient and available sooner. The
observable sensitive to this asymmetry that is typically quoted by experiments is the
effective lifetime, which we will also introduce in Chapter 3. Throughout this thesis
effective lifetimes will play a prominent role in our hunt for New Physics.

Another consequence of the sizable decay width difference of the two Bs mass-
eigenstates is that the definition of their branching ratio becomes ambiguous. This
is not surprising, because in general there is no obvious way to define a single branching
ratio for two different physical states. In the neutral kaon system, for example, the
total decay widths of the mass-eigenstates KS and KL are very different, so it is not
intuitively clear what a single branching ratio would mean in this case. However, in
the neutral Bd and Bs systems, where the total widths are similar (almost exactly so
in the Bd case), it is tempting to have such a definition. In Chapter 3 we will discuss
two definitions currently in use, with one corresponding to how a Bs branching ratio is
experimentally measured and the other how it is theoretically calculated. In particular,
we will present the dictionary necessary to convert between them. To avoid making
theoretical assumptions in such a conversion, it is possible to use information from the
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effective lifetime measurement of the decay channel in question.

The CP violation present in the Standard Model can be described by a triangle
constructed in the complex plane, describing the unitarity of the quark mixing matrix,
which we will elaborate on in Chapter 2. The apex of this triangle has already been
constrained using many different analyses (for a review see, for example, Ref. [17]),
which so far gives a consistent picture. However, one angle of this triangle, referred
to as γ, has yet to be accurately determined directly. In Chapter 4 we will discuss
strategies for determining this angle using two different Bs meson decays: Bs → K+K−

and Bs → D
(∗)
s K. These two decays complement each other in an interesting way.

Specifically, the first decay is driven by virtual loop processes and is thereby also sensitive
to New Physics effects. The second decay, on the other hand, receives no contributions
from such loop diagrams. Furthermore, a time-dependent analysis of the second decay
is theoretically clean. It will therefore be interesting to eventually compare the results
of the strategies of these two decays, as this may indicate the presence of New Physics.

A possible hiding place for new sources of CP violation is in the mixing of the Bs

meson system, a phenomenon we will introduce in detail in Chapter 3. The CP violation
that enters this mixing is parameterised by a phase φs. The flagship experimental
analysis for probing this phase is a time-dependent angular analysis of the decay mode
Bs → J/ψφ, which includes flavour tagging. In Chapter 5 we will, as we discussed
and motivated above, present alternative strategies and decay modes for extracting this
phase. In particular, we will consider the decay modes Bs → J/ψf0(980) and Bs →
J/ψη(′). The advantage of these modes is that their determination depends on different
experimental techniques, such as requiring no angular analysis. The disadvantage, as we
will discuss, is the uncertain composition of the f0(980) and η(′) isospin singlet states.
In this chapter we will also present a strategy for extracting the phase φs and the Bs

decay width difference using only a pair of effective lifetimes, which involves no flavour
tagging, and compare the result with the flagship analysis.

A good place to look for New Physics is within decays that are very suppressed in
the Standard Model. A prime example of such a rare decay is Bs → µ+µ−, which in
the Standard Model is expected to occur only once for every 300 million Bs mesons. It
was long hoped that the branching ratio measurement of this decay would be orders of
magnitude larger than expected and thereby reveal a clear signal of New Physics. Alas,
recent measurements of this branching ratio, as we will present in Chapter 6, turn out
to be in the ballpark of the Standard Model. This makes the issue of how a branching
ratio is defined, as we discussed above, very relevant for this decay mode, and we will
present the necessary correction in Chapter 6. We will also discuss how an effective
lifetime measurement for this decay complements the branching ratio. Essentially the
effective lifetime is sensitive to features of New Physics models that the branching ratio
is not. Furthermore, we will discuss how the combination of the branching ratio with
the time-dependent Bs → µ+µ− observables can discriminate between different classes
of New Physics models.
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Brief outline of this thesis

The outline of this thesis is as follows. In Chapter 2 we introduce some of the existing
theoretical tools and frameworks common to our analysis strategies. In Chapter 3 we
present the Bs meson system, and focus in particular on the observables and subtle
effects that originate from the sizable decay width difference of the mass-eigenstates of
this system. In Chapter 4 various strategies for extracting the angle γ of the unitarity
triangle using the decay modes Bs → K+K− and Bs → D

(∗)
s K are discussed. The former

decay mode is dominated by QCD penguin topologies whereas the latter is governed
purely by tree topologies and is theoretically clean. In Chapter 5 we turn our attention
to determining the Bs mixing parameters, particularly the mixing phase φs. To this
end we analyse decay modes of the form Bs → J/ψss̄, with the ss̄ state taken to be
the f0(980) or the η(′) mesons. We also present an analysis strategy for pinpointing the
mixing parameters based only on a pair of effective lifetime measurements. In Chapter 6
we discuss how an untagged time-dependent analysis of the rare decay Bs → µ+µ−

offers complementary information to the branching ratio, which can help to discriminate
between various models of New Physics. In addition we point out how this branching
ratio must be corrected due to the Bs decay width difference. In Chapter 7 we summarise
the findings of this thesis and provide an outlook.
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Chapter 2

Technology

2.1 Quark flavour mixing and CP violation

The cornerstone of our modern understanding of particle physics is gauge theory. Gauge
theory in this context is an extension of quantum field theory, which describes particles
by fields. In a gauge theory such fields are required to be invariant under a particular
continuous symmetry at every point in space. In order to enforce this local symmetry,
additional fields known as gauge bosons must be introduced to communicate changes
in the gauge degrees of freedom protected by the symmetry. A consequence of this
communication mechanism is that otherwise freely moving particles begin to interact,
attracting or repelling each other. Thereby gauge bosons mediate forces. Or, to put
it differently, each of the known forces, bar perhaps gravity, can be associated with a
specific continuous local symmetry.

The Standard Model of particle physics is a gauge theory that has the continuous
gauge-symmetry

SU(3)C × SU(2)L × U(1)Y . (2.1)

The symmetry SU(3)C , describing a conserved colour charge, represents the strong force
with gauge bosons called gluons. The fermion fields of the Standard Model that carry
a non-trivial colour charge are classified as quarks and the rest as leptons. The unique
feature of the strong force, to which it owes its name, is that it forces quarks together
into strongly bound states known as hadrons. A combination of three quarks is called
a baryon, and a quark together with an antiquark a meson. The Standard Model has
a total of six flavours of quarks and antiquarks, which, in order of increasing mass, are
labeled u, d, s, c, b and t. In this thesis our focus will be on the decays of the mesons

B0
s and B

0

s, which have the flavour content b̄s and bs̄, respectively. To this end we will
first explain the mechanisms responsible for such decays, and for this we need to discuss
the other two Standard Model forces.

Quarks and leptons are described in the Standard Model by Dirac fermions1. A Dirac

1Neutrinos may yet prove to be Majorana fermions instead

7



8 CHAPTER 2. TECHNOLOGY

fermion ψ can be decomposed into left and right handed chiral components, ψL,R, using
the projection matrices P(LR) ≡ (1 ∓ γ5)/2. The Standard Model symmetry SU(2)L,

which represents the weak force, only acts on left-handed fermions. Specifically, the
left-handed quark doublets

(
uL
dL

)

1

,

(
cL
sL

)

2

,

(
tL
bL

)

3

, (2.2)

transform under the fundamental representation of SU(2)L. We will collectively refer to
these doublets as QL,i, and use i ∈ {1, 2, 3} as a general label for the three fermion gen-
erations e.g. uL,i = {uL, cL, tL}. The three generations of left-handed lepton doublets,

(
νeL
eL

)

1

,

(
νµL
µL

)

2

,

(
ντL
bL

)

3

, (2.3)

transform in the same way, and will be referred to by LL,i. Finally each Standard Model
fermion also carries a non-trivial hypercharge associated to the symmetry U(1)Y . We
may thus conclude that left-handed quarks are the most sociable species of elementary
particles that we know about, as only they are charged under each symmetry of the
Standard Model gauge group.

The fact that the left-handed quarks and leptons participate in the SU(2)L chiral
symmetry, requires the Standard Model to have a special mechanism for generating their
masses. This is because ordinarily fermion mass terms mix chirality and therefore break
this symmetry. An elegant solution, proposed by Brout, Englert and Higgs [18, 19], is
to introduce additional fields that dynamically break the electroweak symmetry, and in
turn generate all the masses of the theory. To this end a combination of scalar fields are
introduced that are charged under SU(2)L × U(1)Y , and that have a carefully chosen
scalar potential so that one of the real scalar fields takes a non-zero vacuum expectation
value v at its minimum. To be precise, a doublet of complex scalars is introduced

H =

(
H+

H0

)
, (2.4)

transforming under the fundamental representation of SU(2)L and with a hypercharge
of 1. The desired minimum then occurs at the vacuum expectation value

〈H〉 =

(
0
1√
2
v

)
, (2.5)

as the generators of SU(2)L × U(1)Y acting on this minima do not leave it invariant,
bar one exception: the combination I3 + Y/2 ≡ Q, where I3 is the diagonal generator
of SU(2)L and Y the generator of hypercharge. Thus the continuous local symmetry
SU(2)L × U(1)Y is spontaneously broken at this minimum, leaving only the subgroup
U(1)Q intact, the gauge symmetry of electromagnetism. In place of the three broken
symmetries we recover three Goldstone bosons, whose degrees of freedom are captured by
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the corresponding gauge bosons, W± and Z0, to become their longitudinal components.
Via this so-called Brout–Englert–Higgs mechanism, these gauge bosons also pick up a
mass proportional to the Higgs vacuum expectation value. The remaining massless gauge
boson, corresponding to the gauge symmetry U(1)Q that is preserved at the minimum
of the scalar potential, is the photon γ familiar from electromagnetism.

In order to also give a mass to quarks and leptons, they too must be coupled to
the Higgs doublet field. The electroweak gauge invariant way to do this is via so-called
Yukawa terms, which in general are given for quarks by

LYukawa =
∑

i,j

yiju
(
QL,i · iσ2H

∗)uR,j +
∑

i,j

yijd
(
QL,i ·H

)
dR,j + h.c., (2.6)

where the latin indices sum over quark flavour (as mentioned earlier), and the dot
product refers to an inner product of SU(2)L doublets. The matrices yu and yd are gen-
eralized Yukawa terms in flavour space, and not necessarily diagonal. After electroweak
symmetry breaking this produces the mass terms

Lmass =
∑

i,j

mij
u uL,i uR,j +

∑

i,j

mij
d dL,i dR,j + h.c., (2.7)

where mu,d ≡ v yu,d/
√

2. Because the mass matrices are in general also not diagonal,
we recover the quark mass-eigenstates with the unitary transformations2

u′L,i =
∑

j

Uu
L,ij uL,j, u′R,i =

∑

j

Uu
R,ij uR,j, diag(mu′ ,mc′ ,mt′) = Uu†

L mu Uu
R,

d′L,i =
∑

j

Ud
L,ij dL,j, d′R,i =

∑

j

Ud
R,ij dR,j, diag(md′ ,ms′ ,mb′) = Ud†

L md Ud
R. (2.8)

where, for temporary clarity, we denote the mass-eigenstates with a prime.

The unitarity of the transformation matrices Uu,d
L,R ensures that the neutral vector

currents of the Standard Model are unaffected by the change of basis, for example:

ūLγ
µuL → ū′Lγ

µu′L. (2.9)

This is not true for the charged weak force current which becomes

i g2√
2
W+
µ ūLγ

µdL + h.c→ i g2√
2
W+
µ ū
′
L

(
Uu
LUd†

L

)
γµd′L + h.c. (2.10)

The matrix V ≡ Uu
LUd†

L , if not purely diagonal, therefore enables flavour changing
charged currents between different generations of left-handed quarks, and is named after
its developers Cabibbo, Kobayashi and Maskawa (CKM) [20, 21]. Being a product of
two unitary matrices, it is itself also unitary (at least in the Standard Model). Our focus

2It is assumed that mu,d can be transformed into a real diagonalized form.
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γ

W
sb

q
Vqb V ∗

qs
Vqb V ∗

qs f (mq)
q = u, c, t q = u, c, t

Figure 2.1: The flavour changing neutral current (FCNC) decay b → sγ, where the
function f(mq) describes the general dynamics of the loop process. In the limit mu =
mc = mt the amplitude would vanish due to the unitarity of the CKM matrix.

has been on the left-handed quarks, but we should note that the same arguments hold
for left-handed leptons. In the lepton case the mixing matrix is named after Pontecorvo,
Maki, Nakagawa and Sakata [22, 23, 24] (PMNS). Over the past decade neutrino flavour
mixing has been observed, dispelling the long held idea that neutrinos are massless [25].
It is still an open question, however, whether neutrinos are Dirac or Majorana fermions.

We already noted that the unitarity of the transformations to the mass-eigenstate
basis prevent flavour changing neutral currents (FCNCs) at tree level in the Standard
Model. This feature is known as the GIM-mechanism, which is named after Glashow,
Iliopoulos and Maiani who proposed the existence of the charm quark to explain the
absence of s ↔ d transitions at tree-level [26]. At loop level, however, such a neutral
current is achievable by combining two flavour changing charged currents. For example,
a b quark can decay to an s quark and a photon via a loop process involving a W boson
and up-type quarks as shown in Figure 2.1. Such a process is then proportional to

M(b→ s γ) ∝
∑

i

V ∗i2Vi3 fi, (2.11)

where fi specifies the loop dynamics associated to the up-type quark ui = {u, c, t}
(from here on we will always refer to quark mass-eigenstates, and stop denoting them
with a prime). In the Standard Model the dynamics differ only with respect to the
quark masses, so that fi = f(mqi). Thus, if the mediating quarks (in the example up-
type) are degenerate in mass, the unitarity of the CKM matrix would ensure a perfect
cancellation for such a transition. An approximate cancellation due to nearly degenerate
quark masses is often referred to as a GIM-suppression. The quark masses (determined
in the MS-scheme) are given as follows [27, 28, 17]:

mu(2 GeV) = (2.1± 0.1) MeV, md(2 GeV) = (4.73± 0.12) MeV,

ms(2 GeV) = (93.4± 1.1) MeV, mc(mc) = (1.279± 0.013) GeV,

mb(mb) = (4.18± 0.05) GeV, mt(mt) = (163± 1) GeV. (2.12)

We see that up-type FCNCs, dependent on down-type quark mass differences, are more
strongly GIM-suppressed.

Let us now consider the CKM matrix in more detail. Being unitary, the CKM matrix
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can be parameterized in terms of three Euler angles and one CP-violating phase [17]:

V =




1 0 0
0 c23 s23

0 −s23 c23






c13 0 s13 e
−iδ13

0 1 0
−s13 e

iδ13 0 c13






c12 s12 0
−s12 c12 0

0 0 1


 , (2.13)

where sij = sin θij and cij = cos θij. Experimentally it has been established that
s13 � s23 � s12 � 1, which has prompted the use of the more convenient Wolfen-
stein parameterization [29]:

s12 = λ, s23 = Aλ2, s13 e
−iδ13 = Aλ3(ρ− iη). (2.14)

As λ � 1 we may use it as an expansion parameter, resulting in a clearer depiction of
the relative coupling strengths of the flavour changing weak processes:

V =




1− 1
2
λ2 λ Aλ3(ρ− iη)

−λ 1− 1
2
λ2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


+O(λ4). (2.15)

The unitarity of the CKM matrix gives six orthogonality conditions that can be
depicted as triangles in the complex plane in the presence of a non-trivial CP-violating
phase. The angles and lengths of these triangles can often be probed directly by exper-
iments, and it is therefore useful to reparameterize the CKM matrix in terms of them.
Of particular interest is the normalized unitarity condition

1 +
VudV

∗
ub

VcdV ∗cb
+
VtdV

∗
tb

VcdV ∗cb
= 0 (2.16)

as it gives one of two triangles in the complex plane with sides in equal proportion to
order λ. This triangle is shown in the left panel of Figure 2.2, and is often referred to
as the unitarity triangle. Expanding to sixth order in λ, this triangle’s vertex is given
by [30]

ρ̄ = ρ(1− 1

2
λ2), η̄ = η(1− 1

2
λ2), (2.17)

its sides by

Rb ≡
∣∣∣∣
VudV

∗
ub

VcdV ∗cb

∣∣∣∣ =
√
ρ̄2 + η̄2, Rt ≡

∣∣∣∣
VtdV

∗
tb

VcdV ∗cb

∣∣∣∣ =
√

(1− ρ̄)2 + η̄2, (2.18)

and its angles by

α ≡ arg

(
− VtdV

∗
tb

VudV ∗ub

)
=

1

2
sin−1

[
2η̄(η̄2 + ρ̄2 − ρ̄)

(ρ̄2 + η̄2)((1− ρ̄)2 + η̄2)

]
,

β ≡ arg

(
−VcdV

∗
cb

VtdV ∗tb

)
=

1

2
sin−1

[
2η̄(1− ρ̄)

(1− ρ̄)2 + η̄2

]
,

γ ≡ arg

(
−VudV

∗
ub

VcdV ∗cb

)
=

1

2
sin−1

[
2ρ̄ η̄

ρ̄2 + η̄2

]
, (2.19)
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Figure 2.2: Two normalized unitarity conditions of the CKM matrix as triangles in the
complex plane. The left triangle is the famous unitarity triangle with sides of equal
proportion. The right triangle shows the small angle βs.

with α + β + γ = π.

At higher orders in λ we also find another, very squashed, unitarity triangle due to
the phase of Vts in the Wolfenstein parameterization. This triangle is shown (not to
scale) in the right panel of Figure 2.2. The definition of this small angle is given by

βs ≡ arg

(
−VtsV

∗
tb

VcsV ∗cb

)
= λ2η. (2.20)

As will be discussed in Section 3.1, this phase can be probed by B0
s–B

0

s mixing. If we
expand the Wolfenstein parameterization of the CKM matrix to O(λ5), its components
can be written in terms of the angle β, γ and βs in the following way:

V =




1− 1
2
λ2 − 1

8
λ4 λ

[
Aλ3Rb/(1− 1

2
λ2)
]
e−iγ

−λ 1− 1
2
λ2 − 1

8
λ4(1− 4A2) Aλ2

Aλ3Rt e
−iβ −Aλ2 eiβs 1− 1

2
A2λ4


+O(λ5).

(2.21)

All of the triangles corresponding to the six unitarity conditions have the same area,
which is given by half the Jarlskog parameter [31]

JCP ≡ Im(VikVjlV
∗
ilV
∗
jk), (i 6= j, k 6= l)

= A2λ6η ∼ 10−5. (2.22)

The Jarslkog parameter is a measure of the amount of CP violation present in the mixing
matrix, and vanishes in the absence of a CP-violating phase. It so happens that the
observed CP violation in the Standard Model CKM matrix is a thousand times less than
the maximum that is possible in a unitary 3× 3 matrix.

Part of the goal of this thesis is to probe the consistency of the CKM matrix. Es-
sentially, we seek to establish if the Standard Model CKM matrix gives the complete
picture of CP violation, or if there are other sources of CP violation. Simultaneously,
we also seek to answer whether there are new mechanisms or particles responsible for
enhanced (or suppressed) flavour changing currents among quarks.
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2.2 Operator product expansion for weak decays

We would like to study quark flavour changing processes and CP violation using Bs

meson decays. As discussed in Section 2.1, these two phenomena occur in the Standard
Model via the weak interaction. This confronts us with a large discrepancy in scales.
Namely, hadrons decay with energies of the order of their mass, E ∼ mb ≈ 4 GeV in
the case of Bs mesons, whereas the weak decay is mediated by W bosons with a mass
of MW ≈ 80 GeV. Clearly E � MW , so any W boson produced will be highly virtual.
In other words, to a decaying meson an intermediate W boson is not resolvable and the
associated weak transition will effectively appear as a four-fermion point interaction.
If we let k ∼ E be the momentum transfer of a W boson, then its momentum-space
propagator expanded in powers of k2/M2

W becomes

∆µν(k) =
−1

k2 −M2
W

(
gµν − kµkν

M2
W

)
→ gµν

M2
W

+O
(
k2

M4
W

)
, (2.23)

i.e. at leading order it represents a purely local interaction. Often in this limit the W
boson is said to be integrated out, which refers to the formal procedure of removing it
from the generating functional by integrating over its fields in the absence of any source
terms.

By integrating out the heavy W boson we can construct a low-energy effective field
theory. At tree level the corresponding effective interaction Hamiltonian for quarks and
leptons is given by

Htree
eff =

GF√
2
JµJ µ† (2.24)

where
Jµ =

∑

ij

V CKM
ij ūiγµ(1− γ5)dj +

∑

ij

V PMNS
ij ν̄iγµ(1− γ5)lj. (2.25)

The Fermi constant,

GF ≡
√

2 g2
2

8M2
W

, (2.26)

was introduced in the original Fermi theory [32] that described weak decays in terms of
four-fermion interactions before the discovery of the mediating W boson. In Figure 2.3
we illustrate how the W boson propagator is replaced by a local four point interaction.

As the weak decays we will be interested in involve hadrons, QCD effects will play
an important role. In particular, as hadrons are strongly bound states, we will have to
contend with QCD in its non-perturbative low-energy regime. To this end we introduce
the Operator Product Expansion (OPE) for weak decays [33, 34, 35],

Heff =
GF√

2

∑

i

CiOi, (2.27)

which generalizes the tree-level effective theory above. The Oi represent a basis of
operators, typically of mass dimension six, relevant for the process under consideration.
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k2 ≪ M2
Wg2

g2

W

k

u

d

νe
e

u

d

νe
e

GF =
√

2
8

g2
2

M2
W

Figure 2.3: Illustration of how the W propagator is replaced by a local four point
interaction in the low energy effective theory.

As before, higher dimensional operators that are suppressed by additional powers of
the heavy scale, 1/MW , are neglected. The Ci are Wilson coefficients, essentially the
coupling constants of this new operator basis. The basic idea is that the high energy
dynamics of the theory are contained in these Wilson coefficients. This includes both
the heavy fields above the typical interaction that have been integrated out, such as the
W and Z bosons and the top quark, and QCD effects above this energy scale.

The utility of the OPE can be better understood in the context of an amplitude
computation. Consider for example the transition of some initial hadronic state i to
some final state f . Using the effective Hamiltonian in (2.27) the amplitude becomes

〈f |Heff |i〉 =
GF√

2

∑

j

Cj(µ)〈Oj(µ)〉, (2.28)

where we have made explicit the renormalization scale µ. In a dimensional regularization
scheme (such as MS) this is the scale introduced in order to keep the strong coupling
constant dimensionless in d 6= 4 dimensions. The effect of using the OPE is that the
amplitude is factorised into two parts describing two different energy regimes. The
Wilson coefficients describe the short-distance physics with energies above the scale
µ, whereas the operator matrix elements 〈Oj(µ)〉 describe long-distance physics with
energies below this scale. In this sense the scale µ doubles as a factorisation scale. The
physical amplitude in (2.28) cannot depend on the scale µ. Therefore the µ dependence
of the Wilson coefficients and the operator matrix elements must cancel each other. In
practice the dependence on µ is expressed in terms of a truncated series in αs(µ) and
the cancellation is effective up to this order in the series.

Due to the asymptotic freedom of QCD, the Wilson coefficients can be computed
straightforwardly using perturbation theory. The matrix elements, however, describe an
energy regime where the strong coupling constant can no longer be treated perturba-
tively. Their determination in principle requires more involved theoretical calculations
with larger theoretical uncertainties. We will return to their evaluation in Section 2.3.

The Wilson coefficients are determined by matching amplitude calculations using
the effective theory with calculations using the full theory at a given order in the strong
coupling constant αs. However, beyond zeroth order in QCD the amplitudes in both
theories must first be renormalized. As only the short-distance physics is meant to
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be encapsulated into the Wilson coefficients, infrared or collinear divergences are of
no concern provided they are regulated consistently in both calculations3. Specifically,
they are simply absorbed into the operator matrix elements, which anyway represent
the long-distance non-perturbative physics.

For the effective field theory it is conventional to renormalize the operators rather
than the couplings (Wilson coefficients). Consider for example a single generic operator

O2 = (q̄1αΓ1 bα)(q̄2βΓ2 q3β), (2.29)

where {Γ1,Γ2} represents some Dirac matrix structure and the Greek indices denote the
colour flow of the quarks (with Einstein summation implied). Once QCD corrections
are included there will be gluon exchanges between the quark legs that will not only
introduce ultraviolet (UV) divergences but also change the colour flow of this effective
operator. Therefore in order to successfully subtract the divergences a second operator
with the following colour structure is required:

O1 = (q̄1αΓ1 bβ)(q̄2βΓ2 q3α). (2.30)

And, likewise, the renormalization of this operator requires the presence of the original
one, so that this pair of operators is said to mix under renormalization. In general, a
set of bare operators O(0)

i is renormalized by

O(0)
i = ZijOj, (2.31)

and mixes as a result. The associated anomalous dimension matrix is given by

γ̂ ≡ Z−1 d

d lnµ
Z. (2.32)

The mixed operators can for convenience be transformed back into an unmixed diagonal
basis. Either way, after renormalization the Wilson coefficients in the desired basis
are extracted by equating the renormalized amplitudes of the effective and full theory
calculations.

We are not quite done, however. After renormalizing the QCD corrections we find
logarithm terms of the form lnM2

W/µ
2 in the Wilson coefficients. For a factorisation

scale µ set to a typical meson decay energy of O(1 GeV), these logarithms are large and,
because they accompany the strong coupling constant αs(µ), can ruin the perturbative
expansion. The solution is to use the Renormalization Group Equations (RGE) for the
Wilson coefficients

d

d lnµ
C(µ) = γ̂TC(µ), (2.33)

where γ̂ was given in (2.32) and C(µ) is a column vector of the Wilson coefficients
introduced in (2.28). With this equation in hand we can first evaluate the Wilson

3Amplitude calculations can in fact often be simplified by picking an unphysical setup, such as
setting all external momenta equal, at the cost of introducing infrared divergences.
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Current-current Electroweak penguinQCD penguin

Figure 2.4: Diagrams in the full theory of the Standard Model that result in the equiv-
alently labeled operators in the ∆B = 1 effective Hamiltonian presented in the text.
Here D ∈ {d, s} corresponds to ∆S = 0 or ∆S = 1 Hamiltonian, respectively, j ∈ {u, c}
and q ∈ {u, d, s, c, b}.

coefficients at a high energy scale µ = MW , at which the troublesome logarithms become
small or vanish, and then evolve them down to the lower factorisation scale µ. For
example, suppose in renormalizing the effective theory we had kept terms up to order
αs(µ) lnM2

W/µ
2, the so-called leading log approximation [35]. Then, at leading order in

the anomalous dimension the solution to (2.33) is given by

C(µ) =

[
αs(MW )

αs(µ)

]γ̂T (0)/2β0

C(MW )

=

[
1

1 + β0

4π
αs(µ) ln(M2

W/µ
2)

]γ̂T (0)/2β0

C(MW ). (2.34)

We thus see that solving the RGEs has the effect of resumming terms of the form
(αs(µ) lnM2

W/µ
2)n to all orders of n. This is called the renormalization group improved

perturbation theory. Had we kept terms to the next-to-leading-log order, α2
s lnM2

W/µ
2,

then the RGEs would let us resum the terms αs(αs lnM2
W/µ

2)n to all order in n, and
so on.

We will now give the ∆B = 1 effective Hamiltonian relevant for the Standard Model.
We introduce the quark label D ∈ {d, s} to describe both ∆S = 0 and ∆S = 1
transitions, respectively. Along with the W and Z bosons we also integrate out the
top quark, which results in penguin operators originating from top quark loops shown
in Figure 2.4. The unitarity of the CKM matrix further allows us to express

V ∗tDVtb = −V ∗uDVub − V ∗cDVcb. (2.35)

The effective Hamiltonian is then given by

Heff =
GF√

2

∑

j=u,c

V ∗jDVjb

[ 2∑

k=1

Ck(µ)Ojk +
10∑

k=3

Ck(µ)Ok

+ C7γ(µ)O7γ + C8g(µ)O8g

]
+ h.c. (2.36)
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We will make use of the notation (q̄q′)V±A = q̄γµ(1± γ5)q′, Greek indices denote colour
flow (with summation implied) and q ∈ {u, d, s, c, b}. The effective operators O are then
given by [35]:

Current–current

Oj1 = (Dαjβ)V−A(j̄βbα)V−A Oj2 = (Dαjα)V−A(j̄βbβ)V−A; (2.37)

QCD penguin

O3 = (Dαbα)V−A

∑

q

(q̄βqβ)V−A O4 = (Dαbβ)V−A

∑

q

(q̄βqα)V−A

O5 = (Dαbα)V−A

∑

q

(q̄βqβ)V+A O6 = (Dαbβ)V−A

∑

q

(q̄βqα)V+A; (2.38)

Electroweak penguin (eq is the quark electric charge)

O7 =
3

2
(Dαbα)V−A

∑

q

eq (q̄βqβ)V+A O8 =
3

2
(Dαbβ)V−A

∑

q

eq (q̄βqα)V+A

O9 =
3

2
(Dαbα)V−A

∑

q

eq (q̄βqβ)V−A O10 =
3

2
(Dαbβ)V−A

∑

q

eq (q̄βqα)V−A; (2.39)

Magnetic penguin

O7γ =
e

8π2
mbDασ

µν(1 + γ5)bαFµν O8g =
gs

8π2
mbDασ

µν(1 + γ5)taαβbβG
a
µν . (2.40)

At a renormalization scale of µ ∼ mb the current–current Wilson coefficients are of
the order C2(mb) ∼ 1 and C1(mb) ∼ 10−1 when QCD corrections are included. This
is as expected, because the operator O1 requires gluon exchanges to alter the colour
flow. The QCD penguin coefficients are suppressed by an additional factor αs(mb)/4π
and therefore take values of the order C3−6 ∼ 10−2. Likewise electroweak penguins are
suppressed by a factor αQED/4π, and are in general an order of magnitude smaller still.
The magnetic penguins contribute in the Standard Model with C7γ,8g ∼ 10−1. We have
not included the Standard Model semi-leptonic ∆B = 1 operators above. These will be
presented in the context of the decay Bs → µ+µ− in Chapter 6.

As a model–independent description of low energy hadronic physics, the OPE lends
itself well to studies of New Physics. In this case additional effective operators may
need to be introduced that are not present or negligibly small in the Standard Model.
A model describing new scalar particles that interact in a flavour changing way with
quarks, for example, may require additional ∆B = 1 operators of the form:

OSLL = (DPLj)(j̄PLb), OLR = (DPLj)(j̄PRb), etc. (2.41)

In Chapter 6 we will consider such New Physics scalar operators in the context of

∆B = 1 semi-leptonic transitions and B
0

s–B
0
s mixing.
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2.3 Factorising hadronic matrix elements

In the previous section we presented a low energy effective theory as a means to fac-
torise amplitudes involving hadrons into two parts. One part, the Wilson coefficients,
describe the short-distance physics above the factorisation scale. And the other part,
the hadronic matrix elements, describe the long-distance physics below this scale. At
short distances, or equivalently high energies, the strong coupling constant is small and
therefore the Wilson coefficients can be determined perturbatively. However, at long dis-
tances, or low energies, the strong coupling constant is no longer small, and we can not
use perturbation theory in the standard way to compute the hadronic matrix elements.
To simplify this problem somewhat we attempt to factorise hadronic matrix elements
into simpler matrix elements, namely decay constants and form factors [36, 37]. The
latter still represent hadronic physics, but are in general universal for the transitions
they represent. It is therefore possible to use their experimental determination in one
process to make a prediction about another. Alternatively, decay constants and form
factors can also be calculated theoretically using tools such as lattice QCD and QCD
sum rules. These calculations typically suffer from large theoretical uncertainties, but
are steadily improving with time.

The simplest example of factorising a hadronic matrix element into simpler hadronic
components is given by purely leptonic meson decays. Because there are no hadrons in
the final state and the leptons carry no colour charge, the quark currents in the effective
operator can be evaluated between the decaying meson and the vacuum. This defines
the meson decay constants. For example, the decay constant fP for a pseudoscalar meson
P with momentum p is defined in general with respect to its axial-vector quark current
as

〈0|q̄γµγ5q
′|P (p)〉 ≡ ifP pµ. (2.42)

Because the strong force conserves the parity symmetry the vector current vanishes.
Contracting the above expression with p and applying the Dirac equation gives

〈0|q̄γ5q
′|P (p)〉 = −i M2

P

mq +mq′
fP (2.43)

for the pseudoscalar current. For scalar mesons parity conservation implies that its
decay constant fS is defined analogously to the pseudoscalar meson but with respect
to a vector current, which we will discuss further in Chapter 5. In Chapter 6 we will
discuss the purely leptonic decay Bs → µ+µ−.

Another simple but illustrative example of factorisation is for semi-leptonic meson
decays, which lets us introduce the general formalism of form factors. Consider, for
example, the decay P → P ′l̄l′ for two pseudoscalars P and P ′ with momenta p and p′,
respectively. The lepton current can be separated from the hadronic transition P → P ′,
and the hadronic matrix element can be conveniently described in terms of the following
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B0
q

M2

M1

OPE factorization

(näıve)

b
FB0

q→M1 fM2

Figure 2.5: Schematic illustration of (näıve) factorization applied to a B
0

q → M1M2

decay. The arrows show the relative momentum flow, with their size indicating the
magnitude.

form factors:

〈P ′(p′)|q̄γµq′|P (p)〉 =

[
(p+ p′)µ −

M2
P −M2

P ′

k2
kµ

]
F P→P ′

1 (k2)

+

[
M2

P −M2
P ′

k2
kµ

]
F P→P ′

0 (k2), (2.44)

where k = p − p′ is the momentum transfered to the leptons. Analogous expressions
holds for a P → S or S → P transition mediated by an axial-vector quark current (so
that parity is conserved by strong interactions). The expressions for the non-vanishing
scalar and pseudoscalar currents q̄q′ and q̄γ5q

′ can be derived by contracting with qµ

and applying the Dirac equation. A leptonic current of the form l̄γµ(1−γ5)l′ contracted
with the transfered momentum kµ gives terms proportional to the lepton masses due to
the Dirac equation. Therefore, for semi-leptonic decays of the form given in (2.44), the
form factor F P→P ′

0 will be suppressed relative to F P→P ′
1 for small lepton masses, and

the latter can then be probed experimentally directly from the decay rate.

Having defined mesonic form factors and decay constants, we can now more precisely
present the idea behind factorisation for non-leptonic decays. For concreteness we will

consider the pseudoscalar decay B
0

q → M1M2, where M1 and M2 are generic mesons
and q ∈ {d, s}. Essentially we wish to express the hadronic matrix element for a given
operator Oi as

〈M1M2|Oi|B0

q〉 ∼ FB
0
q→M1 fM2 , (2.45)

where FB
0
q→M1 is a form factor for the B

0

q →M1 transition and fM2 the decay constant
of the M2 meson. The dynamic assumptions leading to factorisation are sketched in Fig-

ure 2.5 and can be understood intuitively as follows: the heavy b quark in the B
0

q meson
decays via a flavour changing process to three lighter quarks, as described by the relevant
operator in the effective theory. Two of these quarks, having first arranged themselves
in a colour-singlet configuration, move away quickly due to the kinetic energy released
from the heavier b quark, and form the meson M2. The third quark meets up with the

spectator quark q of the B
0

q meson to form the meson M1. Because the quarks that form
the M2 meson have managed to spatially separate themselves before the hadronization
takes place, soft, long-distance, interactions between the two hadronization processes
are assumed to be negligible. This leads to so-called näıve factorisation, which assumes
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Figure 2.6: Diagrams that are considered non-factorisable in näıve factorisation. In the
QCD factorisation formalism hard gluon corrections of this type can be calculated and
soft gluon exchanges are shown to be suppressed by a power of ΛQCD/mb.

that both soft and hard gluon exchanges between the quarks that form M2 and the

quarks of the B
0

q → M1 system may be ignored [36, 37]. In Figure 2.6 we show such
gluon exchange processes, which represent non-factorisable corrections to näıve factori-
sation. Later in this section we will present a formalism that extends and strengthens
this assumption.

There are of course some caveats to this intuitive picture (for a detailed discussion
see Ref. [38] and references therein). Firstly, let us note that the b quark is considered

to be a heavy quark, and combined with a light quark q the B
0

q is labeled a heavy meson.
The charm quark is also relatively heavy, and thus combinations of charm quarks with
light quarks (D mesons) are labeled heavy mesons too. Somewhat surprisingly, as we
will come back to later, is that c̄c bound states (charmonium mesons) are not considered
to be heavy mesons in this context.

With the above definitions in place we can consider what happens if M1 or M2 is a
heavy meson. The case of M1 being heavy and M2 light, most closely fits the intuitive
picture sketched above. In this case the third quark from the b quark decay will not
carry too much kinetic energy and can easily meet up with the slow spectator quark in
order to hadronize. If, however, M1 is also light, then the third quark will be travelling
much faster than the spectator quark. In this case a hard gluon interaction with another
quark in the game is needed to allow them to meet up, which suppresses the likelihood
of this process. Finally, if the M2 meson is heavy the idea of factorisation is no longer
valid. This is because we can no longer assume that the two quarks that will hadronize to

give M2 have first travelled sufficiently far away for soft interactions with the B
0

q →M1

hadronic transition to be negligible.

In Section 2.2 we saw how the renormalization of QCD corrections to the effective
operators led them to mix. An operator that has the wrong colour flow to contribute to
a decay process can exchange a hard gluon (i.e. with a transition energy greater than
the factorisation scale µ) to remedy this. Therefore effective operators with a specific
Dirac matrix structure, {Γ1,Γ2} typically contribute to an amplitude in pairs. Let us
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consider a generic pair of operators4

O1 = (q̄1αΓ1 bβ)(q̄2βΓ2 q3α),

O2 = (q̄1αΓ1 bα)(q̄2βΓ2 q3β), (2.46)

where Greek indices denote colour. Because mesons are colour-singlet states, it is neces-
sary for the quark currents involved in the separate hadronizations to be in colour-singlet
states in order for factorisation to make sense. Therefore for some processes we need to
Fierz rearrange the above operators to get

Õ1 = (q̄2αΓ̃1 bα)(q̄1βΓ̃2 q3β),

Õ2 = (q̄2βΓ̃1 bα)(q̄1αΓ̃2 q3β), (2.47)

where the Dirac matrix structure {Γ̃1, Γ̃2} is in principle different. Factorisation for the
colour-singlet combinations can now be defined as

〈M1M2|Õ1|B0

q〉F ≡ 〈M1|(q̄2Γ̃1 b)|B0

q〉〈M2|(q̄1Γ̃2 q3)|0〉, (2.48)

〈M1M2|O2|B0

q〉F ≡ 〈M1|(q̄1Γ1 b)|B0

q〉〈M2|(q̄2Γ2 q3)|0〉, (2.49)

either of which may vanish depending on the process in question.

For definiteness let us consider the effective operators in (2.46) with Γ1 = γµ(1− γ5)
and Γ2 = γµ(1− γ5), which is commonly denoted as (q̄1 b)V−A(q̄2 q3)V−A. Furthermore,
let us assume that a matching of the above operators to the full theory at tree-level
results in the Wilson coefficients C2 = 1 and C1 = 0, as is the case in the Standard
Model. In other words, the operator O1 describes QCD corrections to O2. We will now
give the different possible factorised amplitudes based on the classification introduced
in Ref. [39].

A so-called Class I decay is an initial–final state configuration for which only

〈M1M2|O2|B0

q〉F

is non-vanishing in the absence of QCD corrections. An example of such a process is
given in the top row of Figure 2.7. In order to express the amplitude purely in terms of
O2 we can make use of the SU(3) relation

δαδδβγ =
1

N
δαβδγδ + 2 taαβt

a
γδ, (2.50)

for the colour indices to write

C1O1 + C2O2 =

(
C2 +

1

N
C1

)
O2 + 2C1O8, (2.51)

4We choose the labels “1” and “2” so that we can later relate them to the current-current operators
defined in (2.36).
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where N is the number of colours and

O8 ≡ (q̄1t
aΓ1 b)(q̄2t

aΓ2 q3). (2.52)

In factorisation the two separate currents give colour-singlets. If there is no gluon
exchange to alter the existing colour structure, the key assumption of näıve factorisation,
then the resulting trace over the colour generators will cause the matrix element of
this octet operator to vanish. In näıve factorisation we are then left with the Class I
amplitude

〈M1M2|Heff |B0

q〉I =
Gf√

2
KCKMa1(µ)〈M1M2|O2|B0

q〉F (2.53)

where KCKM represents the relevant CKM matrix terms and

a1(µ) ≡ C2(µ) +
1

N
C1(µ). (2.54)

A Class II decay is defined as the contrary situation where only 〈M1M2|Õ1|B0

q〉F is
non-vanishing when QCD correctons are absent. See the bottom row of Figure 2.7 for
an example of such a process. Following similar steps as before we find

〈M1M2|Heff |B0

q〉II =
Gf√

2
KCKMa2(µ)〈M1M2|Õ1|B0

q〉F (2.55)

with

a2(µ) ≡ C1(µ) +
1

N
C2(µ). (2.56)

Finally, we have a Class III decay when both matrix elements are non-vanishing and
a1(µ) and a2(µ) interfere.

At a scale µ where the QCD corrections are small it follows that a1(µ) ∼ 1 and
a2(µ) ∼ 1/N i.e. Class II decay amplitudes are suppressed by the number of colours
N = 3. Therefore Class I decays are said to be colour-allowed and Class II decays
colour-suppressed. This can be intuitively seen in Figure 2.7, where we show the tree level
Feynman diagrams corresponding to colour-allowed and colour-suppressed amplitudes
in the full and effective theories. In colour-allowed amplitudes colour can be summed
over individually for the two final state mesons, whereas in the colour-suppressed decay
there is only one colour sum. In the Standard Model an example of a Class I (colour-

allowed) decay is B
0

d → D+π−, a Class II (colour-suppressed) decay is B
0

d → K̄0J/ψ,
and of a Class III decay is B− → D0K− [40].

The last step in näıve factorisation is to substitute the form factors and decay con-
stants into the factorised matrix elements 〈O2〉F or 〈Õ1〉F . For example, consider a

decay to two pseudoscalars, B
0

q → P1P2, that proceeds via a tree-level colour-allowed
amplitude (top diagrams in Figure 2.7). Plugging the form factor and decay constant
definitions of (2.44) and (2.42), respectively, into the factorised matrix element expres-
sion given in (2.49), the amplitude of this decay is given by

〈P1P2|Heff |B0

q〉 = i
GF√

2
KCKMa1(µ) fP2 F

B
0
q→P1

0 (M2
P2

)
(
M2

Bq −M2
P1

)
. (2.57)
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Figure 2.7: Colour allowed (Class I) and colour suppressed (Class II) non-leptonic meson
decays in the full theory of the Standard Model (left) and in terms of the effective
theory’s OPE at zeroth order in QCD (right). For the latter decay the effective operators
Oi have been Fierz rearranged into Õi in preparation for factorisation as discussed in
the text.

We have thus succeeded to factorise the amplitude into a theoretically computable term
a1(µ) describing the short distance behaviour, and the form factors and decay constants
describing the long distance behaviour. These form factors and decay constants are
universal in the sense that they also enter semi-leptonic and fully leptonic decays as
discussed earlier. Therefore, besides from being theoretically computable, they can in
principle also be determined experimentally from such processes.

Closer inspection of (2.57), however, reveals a problem with the factorisation ap-
proach we have taken so far. Namely, the dependence of the hadronic matrix element
on the renormalization scale µ has disappeared. Consequently, the dependence of the
Wilson coefficients on µ, described by a1(µ), no longer cancels and the amplitude be-
comes dependent on this unphysical scale. Nonetheless, for any given process there may
be a particular factorisation scale at which näıve factorisation works well. Attempts to
properly determine this scale are known as generalized factorisation [41, 42]. They in-
volve introducing additional parameters, representing non-factorisable corrections, that
exactly cancel the µ dependence in a1,2(µ), leaving µ-independent coefficients aeff

1,2. The
idea is that these parameters can be determined by experiment at some scale µ, and
then evolved to their vanishing point using the renormalization group equations. The
scale at which they vanish is then the optimal factorisation scale for the process un-
der consideration. The problem with this approach, however, is that it cannot account
for the renormalization scheme used to compute the Wilson coefficients [43]. Thus the
factorisation scale deduced is scheme dependent and thereby still unphysical.

There have been several attempts to go beyond generalized factorisation. A notable



24 CHAPTER 2. TECHNOLOGY

example is perturbative QCD (PQCD) [44, 45, 46], which, contrary to the factorisation
picture defined above, separates the hard and soft components of a non-leptonic decay by
absorbing the latter into hadronic wave functions to be determined experimentally. Most
interesting for the present discussion, however, is QCD factorisation (QCDF) [38, 47, 48],
which gives a formal description of the intuitive heavy b quark picture we sketched earlier
and reduces to näıve factorisation at leading order. Note that the terms “pertubative
QCD” and “QCD factorization” have broader or different meanings in QCD outside the
current context of hadronic matrix elements for beauty mesons.

QCD factorisation is formulated in the heavy quark limit i.e. it assumes mb � ΛQCD

and treats ΛQCD/mb as an expansion parameter. At leading order in the ΛQCD/mb

expansion the hadronic matrix element for a given operator Oi is given by

〈M1M2|Oi(µ)|B0

q〉 =
∑

j

F
B

0
q→M1

j (M2
M2

)T Iij(µ) ∗ fM2ΦM2(µ) + (M1 ↔M2)

+ T IIi (µ) ∗ fBqΦBq(µ) ∗ fM1ΦM1(µ) ∗ fM2ΦM2(µ). (2.58)

For heavy-light final states, as opposed to light-light final states, the last term on the
right receives a relative ΛQCD/mb power suppression and can be ignored (and also the
second interchanged term is irrelevant). Here the ΦM are light-cone distribution ampli-
tudes, which parameterise the probability of a meson to hadronize for a given momentum
fraction of the constituent quarks. The T I,II are hard-scattering functions, which also
depend on the aforementioned momentum fractions, and parameterise the hard gluon
exchanges between the interacting quarks. A star is used to denote an integration over
the relevant momentum fractions. The dependence of ΦM and T I,II on the renormal-
ization scale µ and renormalization scheme is precisely canceled by that of the Wilson
coefficients. QCDF therefore accomplishes the goal of generalized factorisation by al-
lowing us to replace ai(µ)→ aeff

i as in (2.53) or (2.55), and subsequently compute these
coefficients systematically beyond leading order in αs.

The most powerful result of QCDF is that the soft non-factorisable corrections from
Figure 2.6 only contribute at the next power in the ΛQCD/mb expansion. In addition, the
hard non-factorisable corrections are described by the hard-scattering functions and can
be computed perturbatively in this framework, appearing from O(αs) onwards. This
also means non-factorisable effective operator configurations that create a quark pair
in a non-colour-singlet configuration are consistently included in QCDF at NLO. An
important consequence of QCDF is that at leading order in ΛQCD/mb ∼ 5% and αs it
gives näıve factorisation:

〈M1M2|Oi|B0

q〉 = 〈M1M2|Oi|B0

q〉
∣∣∣
naive fact.

×
[
1 +O(αs) +O

(
ΛQCD

mb

)]
. (2.59)

QCDF makes our earlier statement regarding light-heavy final states, where the
meson M2 that flies off is heavy, more precise. Specifically, it follows from QCDF that
soft non-factorisable corrections in this case are not power suppressed in ΛQCD/mb i.e.
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they enter at O(1). If, instead, the M2 meson is a cc̄ charmonium state and c is treated
as a heavy quark, mc ∼ mb, the soft corrections are power-suppressed, though only by a
factor ΛQCD/(mbαs). In practice the charm quark, being both almost heavy and almost
light, requires special care in QCDF.

In QCDF the imaginary part of an amplitude is also suppressed either by O(αs)
in the hard-scattering case or ΛQCD/mb for soft corrections. It therefore follows that
in general CP-conserving strong phases are small. Exceptions to this rules occur when
also the real part is suppressed by some other mechanism. For example, in the Class II
decays introduced earlier the leading-order diagrams are colour suppressed, which can
lead to sizable strong phases for such decays. Also CKM suppression or small Wilson
coefficients can enhance strong phases, though this is seldom the case in Bq decays.

2.4 Flavour symmetries

In the previous section we discussed how the amplitudes of Bq meson decays can be
factorized into two parts: one describing the short-distance physics and the other the
long-distance hadronic physics. In particular the latter part can be notoriously difficult
to compute theoretically, and current attempts to do so with lattice QCD or QCD sum
rules still come with sizable theoretical errors. In this section we will discuss an alter-
native approach to deal with the hadronic nature of this physics that takes advantage
of the approximate symmetries between quarks of different flavours in QCD. These will
allow us to relate together hadronic matrix elements from different decay processes. In
some cases this lets us factor them out of the relevant observables completely, and in
others we may constrain them using experimentally available data.

Let us consider the QCD Lagrangian with N flavours of massless quarks

L = i

N∑

j

qL,j��D qL,j + i

N∑

i

qR,j��D qR,j −
1

4
GaµνGa

µν (2.60)

where Dµ is the standard covariant derivative of SU(3)C and Ga
µν the gluon field strength

tensor. This Lagrangian has a global U(N)L×U(N)R chiral symmetry transforming as

qL,i → (UL)ij qL,j = exp
(
−iθaLtaij − iθLδij

)
qL,j (2.61)

qR,i → (UR)ij qR,j = exp
(
−iθaRtaij − iθRδij

)
qR,j (2.62)

with ta the N2 − 1 generators of SU(N). For clarity we will use latin indices or a bold
font to denote the flavour vector space. The 2N2 conserved currents associated with
this symmetry can be expressed as [49]

V µ,a = q̄Lγ
µtaqL + q̄Rγ

µtaqR = q̄γµtaq, (2.63)

Aµ,a = q̄Lγ
µtaqL − q̄RγµtaqR = q̄γµγ5t

aq, (2.64)

V µ = q̄Lγ
µqL + q̄Rγ

µqR = q̄γµq, (2.65)

Aµ = q̄Lγ
µqL − q̄RγµqR = q̄γµγ5q, (2.66)
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where V and A denote vector and axial-vector currents respectively. We note, how-
ever, that the singlet axial vector current U(1)A is only conserved classically. After
quantization it picks up an anomaly [50]:

∂µA
µ =

N g2
s

3π
εµνρσG

µν
a G

ρσ
a . (2.67)

Of course, as presented in (2.12), quarks are not massless. However, if we add a
diagonal mass term to the QCD Lagrangian of the form

LM = −q̄M q = −q̄RM qL − q̄LM qR, (2.68)

then we find that it mixes the left and right handed fields, and thereby explicitly breaks
the chiral symmetry. Specifically, the currents listed in (2.66) then have the following
divergences [49]:

∂µV
µ,a = iq̄[M , ta]q, (2.69)

∂µA
µ,a = iq̄{M , ta}q, (2.70)

∂µV
µ = 0, (2.71)

∂µA
µ = 2 iq̄Mγ5q +

N g2
s

3π
εµνρσG

µν
a G

ρσ
a . (2.72)

We see that the mass term breaks the axial vector currents. The vector currents V µ,a

on the other hand can remain conserved if the masses of the quarks are degenerate
i.e. if M ∝ 1 so that [M , ta] = 0. Only the singlet vector current remains conserved
regardless of the quark masses introduced.

Assuming that the three lightest quarks are degenerate in mass gives the SU(3)F ≡
SU(3)V flavour symmetry of Gell-Mann and Ne’eman [51, 52]. At an energy scale of
1 GeV, which is much larger than the three light quark masses, the SU(3) axial vector
current could be expected to be approximately conserved. However, if it were, we
would expect to see parity doubling. Namely, if both Qa

V and Qa
A commute with the

QCD Hamiltonian, then the fact that Qa
A has negative parity means we would expect

a negative parity state for every positive parity one. But we do not observe a negative
parity baryon octet for example. The absence of approximately conserved Aµ,a axial
vector currents can be explained by the spontaneous breaking of SU(3)L × SU(3)R →
SU(3)V . The presence of a scalar quark condensate is sufficient for this symmetry
breaking to take place [49]. The pseudo-Goldstone bosons that result from the eight
broken axial vector generators give the eight pseudoscalar mesons π±, π0, K±, K0, K̄0, η.

We may also assume mu = md, md = ms and mu = ms on an individual basis,
which give the SU(2) flavour symmetries known as isospin, U -spin and V -spin, respec-
tively. These three symmetries are subgroups of SU(3)F. To see this explicitly, consider
q ≡ (u d s)T transforming under the fundamental representation of SU(3)F. In this rep-
resentation the SU(3) generators can be described in terms of the Gell-Mann matrices
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ta = λa/2, where

λ1 =




0 1 0
1 0 0
0 0 0


 λ2 =




0 −i 0
i 0 0
0 0 0


 λ3 =




1 0 0
0 −1 0
0 0 0




λ4 =




0 0 1
0 0 0
1 0 0


 λ5 =




0 0 −i
0 0 0
i 0 0


 λ6 =




0 0 0
0 0 1
0 1 0




λ7 =




0 0 0
0 0 −i
0 i 0


 λ8 =

1√
3




1 0 0
0 1 0
0 0 −2


 . (2.73)

By defining

I1 ≡ t1, I2 ≡ t2, I3 ≡ t3,

V 1 ≡ t4, V 2 ≡ t5, V 3 ≡
1

2

(√
3 t8 + t3

)
,

U 1 ≡ t6, U 2 ≡ t7, U 3 ≡
1

2

(√
3 t8 − t3

)
, (2.74)

we see that

[I i, Ij] = i εijkIk, [U i,U j] = i εijkU k, [V i,V j] = i εijkV k, (2.75)

and thus recover the isospin, U -spin and V -spin SU(2) subgroups, which rotate the
pairs of quarks (u, d), (d, s) and (u, s), respectively.

To illustrate how flavour symmetries can be a useful tool for analysing meson decays,
let us consider an example involving isospin symmetry. Specifically, we can use isospin
symmetry to derive a relation between the transition amplitudes of the decays B0

d →
π+π−, B+

u → π+π0 and B0
d → π0π0. Such a relation is used for example in the Gronau–

London method [53] to control penguin contributions to the decay Bd → π+π−, and
thereby extract the CP angle α from its time-dependent analysis, but we will not discuss
this further. In Chapter 4 we will present an alternative strategy for extracting the CP
violating angle γ from this decay mode using its U -spin symmetry relation to Bs →
K+K−.

Under the SU(2) isospin symmetry the mesons B0
d ≡ b̄d and B+

u ≡ b̄u transform as
an isodoublet (B+

u B0
d)
T , and the pions π+ ≡ ud̄, π0 ≡ 1√

2
(dd̄−uū) and π− ≡ −dū as an

isotriplet (π+ π0 π−)T . The two pion final states of the decays in question are therefore
described by the isospin tensor product 1⊗ 1, and decompose to

〈π+π−| =
√

1

3
〈2, 0|+

√
2

3
〈0, 0|,

〈π0π0| =
√

2

3
〈2, 0| −

√
1

3
〈0, 0|,

〈π+π−| = 〈2, 1|. (2.76)
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Given the initial isospin states |B0
d〉 = |1

2
,−1

2
〉 and |B+

u 〉 = |1
2
, 1

2
〉, the contributing

transition matrix elements must involve a change of isospin of either ∆I = 1
2
, ∆I = 3

2

or ∆I = 5
2
. We may thus express the effective Hamiltonian in terms of the following

components:

Heff = H
1
2
eff ⊕H

3
2
eff ⊕H

5
2
eff , (2.77)

where the superscript denotes the change in isospin.

To limit the number of distinct amplitudes we end up with, we can use the Wigner-
Eckart theorem to express the amplitudes in terms of reduced matrix elements , which
have no orientation in isospin space. Specifically, the Wigner-Eckart theorem states that

〈J,M |Hj2,m2

eff |j1,m1〉 = Cj1 j2(J M ;m1m2)〈J ||Hj2
eff ||j1〉, (2.78)

where Cj1 j2(J M ;m1m2) is a Clebsch–Gordon coefficient and 〈J ||H(j2)||j1〉 a reduced
matrix element. As a result, we can express the three decay amplitudes in terms of
three distinct reduced matrix elements:

〈π+π−|Heff |B0
d〉 = −

√
1

3

〈
0
∣∣∣
∣∣∣H

1
2
eff

∣∣∣
∣∣∣1
2

〉
+

√
1

6

〈
2
∣∣∣
∣∣∣H

3
2
eff

∣∣∣
∣∣∣1
2

〉
−
√

1

6

〈
2
∣∣∣
∣∣∣H

5
2
eff

∣∣∣
∣∣∣1
2

〉
,

〈π0π0|Heff |B0
d〉 =

√
1

6

〈
0
∣∣∣
∣∣∣H

1
2
eff

∣∣∣
∣∣∣1
2

〉
+

√
1

3

〈
2
∣∣∣
∣∣∣H

3
2
eff

∣∣∣
∣∣∣1
2

〉
−
√

1

3

〈
2
∣∣∣
∣∣∣H

5
2
eff

∣∣∣
∣∣∣1
2

〉
,

〈π+π0|Heff |B+
u 〉 =

√
3

4

〈
2
∣∣∣
∣∣∣H

3
2
eff

∣∣∣
∣∣∣1
2

〉
+

√
1

3

〈
2
∣∣∣
∣∣∣H

5
2
eff

∣∣∣
∣∣∣1
2

〉
. (2.79)

Of the reduced matrix elements, the ∆I = 1
2

and ∆I = 3
2

transitions receive contri-
butions from short-distance physics [54]. Namely, the current–current and electroweak
penguin operators of the low-energy effective theory (see Section 2.2) contribute to both,
whereas QCD penguins contribute only to ∆I = 1

2
transitions. The ∆I = 5

2
transitions

on the other hand are only generated in the Standard Model by long-distance electro-
magnetic rescattering effects [55]. They are hereby effectively suppressed by a factor
αQED with respect to the ∆I = 1

2
transition and can be neglected to this order. The

remaining two reduced matrix elements in (2.79) then allow us to write the following
amplitude relation in the limit of isospin symmetry:

〈π+π−|Heff |B0
d〉+

√
2 〈π0π0|Heff |B0

d〉 −
√

2 〈π+π0|Heff |B+
u 〉 = 0. (2.80)

It is similarly possible to derive amplitude relations assuming an exact SU(3)F flavour
symmetry e.g. for the triplet (B+

u B0
d B

0
s )
T transforming under the fundamental repre-

sentation [56, 57]. However, an SU(3)F decomposition of a decay amplitude typically
involves many more reduced matrix elements, which complicates the construction and
usefulness of the resulting amplitude relations. Because the reduced matrix elements
can receive contributions from various decay topologies, it is in general difficult to ne-
glect specific ones on dynamical grounds in order to simplify the amplitude relations.
Therefore a better basis is offered by the decay topologies themselves, which can be
straightforwardly mapped to the reduced matrix elements [56, 58, 59].
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For the ∆S = 0 B → ππ transitions considered above, a simplified topology basis is
given by: T (colour-allowed tree), C (colour-suppressed tree), P (penguin), E (exchange)
and PA (penguin annihilation). Using this basis we find that [58]

〈π+π−|Heff |B0
d〉 = −(T + P + E + PA), (2.81)

〈π0π0|Heff |B0
d〉 =

1√
2

(−C + P + E + PA) , (2.82)

〈π+π0|Heff |B+
u 〉 = − 1√

2
(C + T ), (2.83)

which indeed also satisfies the amplitude relation given in (2.80):

−(T + P + E + PA) + (−C + P + E + PA) + (C + T ) = 0. (2.84)

Note that the amplitudes written in this way include CKM factors.

The topology basis for ∆S = 1 transition can be defined analagously to the ∆S = 0
basis above, and distinguished with a prime. For example, by making the SU(3)F

decomposition [58]

〈π−K+|Heff |B0
d〉 = −(T ′ + P ′), (2.85)

〈K+K−|Heff |B0
s 〉 = −(T ′ + P ′ + E ′ + PA′), (2.86)

〈π+π−|Heff |B0
s 〉 = −(E ′ + PA′), (2.87)

we find the amplitude relation

〈π−K+|Heff |B0
d〉 − 〈K+K−|Heff |B0

s 〉+ 〈π+π−|Heff |B0
s 〉 = 0, (2.88)

or, equivalently,

−(T ′ + P ′) + (T ′ + P ′ + E ′ + PA′)− (E ′ + PA′) = 0. (2.89)

Let us now make a dynamical assumption regarding the topology amplitudes. Namely,
assuming that the spectator quark is unlikely to interact with the b quark, the so-called
spectator approximation, we can neglect the exchange (E ′) and penguin annihilation
(PA′) topologies. In this case the decay amplitude for Bs → π+π− vanishes, and we
find the squared amplitude relation

〈π−K+|Heff |B0
d〉 = 〈K+K−|Heff |B0

s 〉, (2.90)

which we will return to in Chapter 4. This illustrates the usefulness of the topology
basis over the reduced matrix element basis, and of flavour symmetries in general.

We observe from (2.81) and (2.86) that the decay amplitudes of Bd → π+π− and
Bs → K+K− have the same classes of topology amplitudes contributing. As we will
discuss in Chapter 4, after factoring out CKM couplings, it turns out that U -spin sym-
metry implies a 1–1 mapping between the hadronic matrix elements of these two decays.
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In Chapter 5 we will use U -spin in a similar way to find control channels for decays of the
form Bs → J/ψss̄. Here, however, it will be necessary to make dynamical assumptions
about the relative contributions of some decay topologies. Of course, U -spin is not an
exact symmetry, and when we use it we must also take U -spin breaking corrections into
account. Such corrections depend on the dynamics of the processes in question and are
therefore difficult to estimate a priori. The quantities fK/fπ − 1 or (ms − md)/ΛQCD

give a ballpark estimate of 20%.



Chapter 3

Observables of the Bs meson system

3.1 The Bs meson system

Flavour, CP and mass basis states

In Chapter 2 we briefly introduced the Bs flavour states B0
s and B

0

s as the strongly bound
states of the quark–antiquark combinations b̄s and bs̄, respectively. These flavour states
are related to each other by the CP transformations

CP|B0
s 〉 = eiξBs |B0

s〉, CP|B0

s〉 = e−iξBs |B0
s 〉, (3.1)

where ξBs is an arbitrary, convention-dependent, phase. As a consequence of this rela-
tion, they can be expressed in a basis of CP–eigenstates

|Bs,±〉 ≡
1√
2

(
|B0

s 〉 ± eiξBs |B
0

s〉
)
, (3.2)

with eigenvalues of ±1, corresponding to CP-even and CP-odd states, respectively.

As discussed in the introduction, the Bs meson system’s flavour states B0
s and B

0

s can
oscillate before decaying. This oscillation can be described in terms of a time-dependent
quantum mechanical state [54]

|Bs(t)〉 = a(t)|B0
s 〉+ b(t)|B0

s〉, (3.3)

where t is the time in the B0
s–B

0

s rest frame. This is called the Wigner-Weisskopf
approximation, as we have ignored other possible intermediate states. This is valid if we
start with only these flavour states and consider times much larger than the interaction
scale. If at time t = 0 a given state has b(0) = 0 or a(0) = 0, then we will simply label

it as |B0
s (t)〉 or |B0

s(t)〉, respectively.

The Schrödinger equation that describes the mixing and decay of this state is

i
d

dt
ψ(t) =

(
M− i

2
Γ

)
ψ(t), ψ(t) ≡

(
a(t)
b(t)

)
, (3.4)

31
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where M and Γ are the mass and decay matrices respectively. For the Bs meson system
to decay with time we require that

d

dt

(
ψ†(t)ψ(t)

)
= −iψ†(t)

(
−M † − i

2
Γ† +M − i

2
Γ

)
ψ(t)

= −ψ†(t) Γψ(t). (3.5)

Thus the matrix M − i
2
Γ cannot be Hermitian, but instead M and Γ must be sepa-

rately Hermitian. For the number of Bs mesons to decrease with time, Γ should also be
positive definite. The matrices M and Γ obey two additional constraints if we make the
experimentally supported assumption that the combination of discrete symmetries CPT
is respected by Nature. To derive these we consider the matrices in second-order per-
turbation theory as a sum over intermediate states n [54]. Under a CPT transformation
the flavour states transform as

CPT |B0
s 〉 = eiνBs |B0

s〉, CPT |B0

s〉 = eiνBs |B0
s 〉, (3.6)

where νBs is a convention-dependent phase. Then, given that [H, CPT ] = 0, we find

M11 = m0 + 〈B0
s |H|B0

s 〉+
∑

n

P
〈B0

s |H|n〉〈n|H|B0
s 〉

m0 − En

= m0 + 〈B0

s|H|B
0

s〉+
∑

n

P
〈B0

s|H|n〉〈n|H|B
0

s〉
m0 − En

= M22, (3.7)

Γ11 = 2π
∑

n

δ(m0 − En)〈B0
s |H|n〉〈n|H|B0

s 〉

= 2π
∑

n

δ(m0 − En)〈B0

s|H|n〉〈n|H|B
0

s〉 = Γ22, (3.8)

where P denotes the principal part. Thus, including the constraints M0 ≡ M11 = M22

and Γ0 ≡ Γ11 = Γ22, there are a total of six mixing degrees of freedom remaining in
M− i

2
Γ, which we will now discuss and present in terms of convenient parameters.

The oscillating system of flavour states can be diagonalized to give mass-eigenstates,
the normal modes of this coupled system. These physical states evolve in time indepen-
dently of each other

|BH(t)〉 = e−iλHt|BH〉, |BL(t)〉 = e−iλLt|BL〉, (3.9)

with eigenvalues

λ(H
L ) = M(H

L ) −
i

2
Γ(H

L ), (3.10)

where M(H
L ) and Γ(H

L ) are the mass and decay width of these physical particles, re-

spectively. It is conventional, as we have done, to label these mass-eigenstates by their
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relative mass, heavy (H) and light (L). They are related to the matrix elements in the
flavour basis by [60]

M(H
L ) ≡M0 ± Re

[(
M12 −

i

2
Γ12

)
α

]
, (3.11)

Γ(H
L ) ≡ Γ0 ∓ 2Im

[(
M12 −

i

2
Γ12

)
α

]
, (3.12)

with

α ≡
√
M∗

12 − i
2

Γ∗12

M12 − i
2
Γ12

. (3.13)

Similarly the mass-eigenstates are expressed in terms of the flavour states by1

∣∣∣Bs,(H
L )

〉
=

1√
1 + |α|2

(
|B0

s 〉 ± α|B0
s 〉
)
. (3.14)

Having already labeled the eigenstates by their relative mass, the Bs mass difference
places the following condition on the matrix elements:

∆Ms ≡MH −ML = 2Re

[(
M12 −

i

2
Γ12

)
α

]
> 0. (3.15)

We also define the Bs mass, decay width difference and mean decay width as2

MBs ≡
MH +ML

2
= M0 (3.16)

∆Γs ≡ ΓL − ΓH = 4Im

[(
M12 −

i

2
Γ12

)
α

]
, (3.17)

Γs ≡
ΓL + ΓL

2
= Γ0, (3.18)

respectively. Throughout this thesis we will often find it convenient to replace the latter
two parameters with the following ones:

ys ≡
ΓL − ΓH

ΓL + ΓH

=
∆Γs
2 Γs

, τBs ≡
1

Γs
. (3.19)

The latter parameter is referred to as the Bs mean lifetime. We will find that the
parameters in (3.13), (3.15) and (3.17) simplify if we take into consideration the relative
magnitude of M12 to Γ12. To that end we proceed to consider these matrix elements
separately.

1In the literature the notation α = q/p is also commonly used.
2Our use of natural units (~ = c = 1) allows us to relate mass and frequencies in this way. Taking

these constants as non-trivial gives MBs
= (~/c2)M0.
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Figure 3.1: Diagrams in the Standard Model that contribute to M12 and Γ12. The
former receives contributions from virtual intermediate quarks, especially a virtual top,
and the latter when the intermediate quarks are on-shell, especially the charm.

B0
s–B

0

s mixing in the Standard Model

The matrix element M21 = M∗
12 is responsible for the virtual, dispersive, transition of

a B0
s to a B

0

s meson. In the Standard Model it is driven by box diagrams involving
virtual W bosons and top quarks as shown in Figure 3.1. The corresponding four-quark
operator in the low energy effective theory is

OVLL
1 = (b̄αγµPLsα) (b̄βγ

µPLsβ), (3.20)

where the label VLL refers to the presence of two left-handed vector currents. It is part
of a general model-independent operator basis for |∆B| = 2 transitions to be presented
in Section 6.4.1. The OPE gives [35]

M∗
12|SM =

G2
FM

2
W

4π2
(VtsV

∗
tb)

2CVLL
1 (µb)〈B0

s|OVLL
1 (µb)|B0

s 〉, (3.21)

where µb = O(mb) is the appropriate factorization scale.

The long-distance physics is contained in the hadronic matrix element and is param-
eterized by

〈B0

s|OVLL
1 (µb)|B0

s 〉 ≡
1

3
MBsf

2
BsB

VLL
1 (µb) e

i(ξBs+ξs−ξb−π), (3.22)

where fBs is the Bs decay constant and the ξs are CP transformation phases. The
parameter BVLL

1 (µb) is historically referred to as a bag parameter, with a deviation from
unity indicating a departure from the vacuum insertion approximation [61]. In lattice
calculations of the hadronic matrix element it is typically the combination f 2

Bs
BVLL

1 (µb)
that is measured. The bag parameter in the context of the Standard Model is often
denoted as BBs(µb) ≡ BVLL

1 (µb), which we will use now to simplify comparisons with
the literature.

The short-distance physics is contained in the Wilson coefficient

CVLL
1 (µb) = η̂B(µb)S0(xt). (3.23)

In this expression

S0(xt) =
4xt − 11x2

t + x3
t

4(1− xt)2
− 3x3

t lnxt
2(1− xt)3

(3.24)
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is the Inami-Lim function with xt = m2
t/M

2
W [62]. It describes the dynamics of the box

diagrams with the W boson and top quark integrated out. The factor η̂B(µb) describes
the short-distance perturbative QCD corrections.

In the above formulation the quantities η̂B(µb) and BBs(µb) share a renormalization
scale and scheme dependence. It is possible to transfer this scale and scheme dependence
to the bag parameter, which results in the combination of independent parameters
ηBB̂Bs = η̂B(µb)BBs(µb) with ηB = 0.55 [63]. Combining the above ingredients then
finally gives

M∗
12|SM =

G2
FM

2
W

12π2
MBsf

2
BsηBB̂Bs (VtsV

∗
tb)

2 S0(xt) e
i(ξBs+ξs−ξb−π). (3.25)

We will generalise the |∆B| = 2 OPE to include additional operators when we discuss
models of New Physics in Section 6.4.1.

The matrix element Γ21 = Γ∗12 is responsible for on-shell, absorptive, B0
s to B

0

s

transitions. This means that all Bs final states carrying no net strangeness contribute
to it. In the Standard Model the leading contributions are given by the box diagrams
shown in Figure 3.1 for on-shell intermediate quarks. Thus the intermediate top quarks
can be neglected as they are far too heavy. Furthermore, an intermediate up quark is
Cabibbo suppressed relative to a charm quark. Therefore the dominant contributions
come from b → cc̄s transitions. In order to theoretically estimate Γ∗12 one can take an
exclusive or inclusive approach. In the exclusive approach an attempt is made to sum

over all exclusive Bs hadronic final states, of which the modes B0
s → D

(∗)
s D

(∗)
s → B

0

s

dominate [64, 65]. In the inclusive approach it assumed that the sum over exclusive
decays is equal to the sum over all intermediate quark states, which is known as quark-
hadron duality.

Following the inclusive approach, we can express the b→ cc̄s transitions in terms of
the |∆B| = 1 effective theory given in Section 2.2, of which Oc1 and Oc2 are the dominant
operators. Because the heavy b quark results in an interaction distance 1/mb much
smaller than the hadronic distance scale, the combination of the two |∆B| = 1 local
operators is effectively also a local operator. This second effective theory is derived by
expanding in powers of the heavy b quark mass mb, known as the heavy quark expansion
(HQE), which is schematically given by [66]

Im i

∫
d4xT

(
O∆B=1(x)O∆B=1(0)

)
=
∑

n

Cn
mn
b

O∆B=2
n (0), (3.26)

where Cn are the corresponding Wilson Coefficients of this theory. The resulting |∆B| =
2 operators at leading order in the mass expansion are OVLL

1 , as given in (3.20), and the
operator

OSLL
1 = (b̄αPLsα) (b̄βPLsβ), (3.27)

where the label SLL similarly refers to the presence of two scalar left handed currents.
Its hadronic matrix element is defined as

〈B0

s|OSLL
1 (µb)|B0

s 〉 ≡ −
5

24
MBs

M2
Bs

(mb +ms)2
f 2
BsB

SLL
1 (µb) e

i(ξBs+ξs−ξb−π). (3.28)
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At leading order in 1/mb and CKM factors, the absorptive transition is thus given by [67]

Γ∗12 = − G2
F m

2
bMBsf

2
Bs

12π
(VcsV

∗
cb)

2 ei(ξBs+ξs−ξb−π)

×
[

1

3
GccBVLL

1 (µb) +
5

24
Gcc
S

M2
Bs

(mb +ms)2
BSLL

1 (µb)

]
+O

(
1

mb

, λCKM

)
, (3.29)

where the coefficients Gcc
(S) are defined in terms of the Wilson coefficients of the |∆B| = 1

effective theory. Note that this expression does not represent the state of the art, and
in the given basis of operators the 1/mb corrections can be as large as 40% [67]. A
modern calculation of Γ∗12, including next-to-leading order corrections in 1/mb and αs
in an optimized operator basis, is given in Ref. [68].

We are now in a position to qualitatively consider the relative magnitudes of M∗
12

and Γ∗12. Assuming Gcc
(S) = O(1), BVLL

1 ≈ BSLL
1 and using the approximation S0(xt) ∼

xt = m2
t/M

2
W we find

Γ∗12

M∗
12

∣∣∣∣
SM

∼ − π

η̂B S0(xt)

(
m2
b

M2
W

)
= O

(
m2
b

m2
t

)
= O(10−4). (3.30)

Thus in the Standard Model we can safely conclude that |Γ12/M12| is a valid expansion
parameter. Also beyond the Standard Model this is a safe assumption, as the dramatic
New Physics necessary to increase this quantity several orders of magnitude has not
been seen experimentally. Specifically, Γ12 is driven by b → cc̄s transitions and no
anomalously large branching ratios are observed for exclusive decays in which this quark
level transition is also dominant.

Before expanding in powers of |Γ12/M12| it will be convenient to define the following
convention independent phases

φs ≡ arg(M12)− π + ξBs + ξs − ξb, (3.31)

φ̃s ≡ arg(−M12/Γ12), (3.32)

where the convention dependent ξ phases exactly cancel those in (3.25). The expansion
then gives

α = −e−iφs ei(ξBs+ξs−ξb)

[
1− 1

2

∣∣∣∣
Γ12

M12

∣∣∣∣ sin φ̃s +O
(∣∣∣∣

Γ12

M12

∣∣∣∣
2
)]

, (3.33)

∆Ms = 2 |M12|
[

1 +O
(∣∣∣∣

Γ12

M12

∣∣∣∣
2
)]

, (3.34)

∆Γs = 2 |Γ12| cos φ̃s

[
1 +O

(∣∣∣∣
Γ12

M12

∣∣∣∣
2
)]

. (3.35)

At leading order we see that the Bs mass difference depends only on M12, the decay
width difference only on Γ12 and its phase relative to M12 and the mixing parameter α
only on the phase of M12.
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A closer look at the mixing parameters

A deviation of |α| from one would imply the presence of CP violation in B0
s–B

0

s mixing.
Experimentally this can be probed using flavour specific decays, which are decays for

which the channels B0
s → f and B

0

s → f̄ are allowed but B
0

s → f and B0
s → f̄

are forbidden. A typical example are semi-leptonic decays of the form Bs → X`ν̄.
Consequently, the so-called semi-leptonic asymmetry is defined as

asSL ≡
Γ(B

0

s(t)→ X`ν̄)− Γ(B0
s (t)→ X ¯̀ν)

Γ(B
0

s(t)→ X`ν̄) + Γ(B0
s (t)→ X ¯̀ν)

=
1− |α|4
1− |α|4

=

∣∣∣∣
Γ12

M12

∣∣∣∣ sin φ̃s +O
[
(|α| − 1)2

]
, (3.36)

where we have made the safe assumption that semi-leptonic decays have no direct CP
violation. One avenue to measure this asymmetry is to search for final states containing

two leptons with the same charge, as this implies that for an initial pair of B0
s–B

0

s mesons
one necessarily mixed into the other. The theoretical prediction for this asymmetry is
tiny [68]:

asSL

∣∣
SM

= (1.9± 0.3)× 10−5. (3.37)

The latest experimental results give

asSL =





(−1.81± 1.06)% : di-muon, DØ [69]
(−1.12± 0.74± 0.17)% : Bs → Ds µνX, DØ [70]
(−0.06± 0.50± 0.36)% : Bs → Ds µν, LHCb [71]

, (3.38)

which are largely consistent with the Standard Model. Throughout this thesis we will
assume for simplicity that asSL = 0 and thus that |α| = 1.

Having established that ∆Ms = 2|M12| to an excellent accuracy, we can use (3.25)
to give a theoretical estimate. The main source of uncertainty are the long-distance
hadronic parameters f 2

Bs
BBs . The current lattice QCD world average3 is [27]

fBs
√
BBs = (226± 12) MeV, (3.39)

at the scale µb = mb. Using this value together with standard inputs from Ref. [17]
gives the Standard Model prediction

∆Ms

∣∣
SM

= (19.0± 2.1) ps−1. (3.40)

This can be compared to the Heavy Flavour Averaging Group (HFAG) experimental
average [73]

∆Ms = (17.73± 0.05) ps−1. (3.41)

3The recent lattice calculation of Ref. [72] is not included in this average. We will discuss its inclusion
in Section 6.4.1.
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We also established to an excellent accuracy that ∆Γs = 2 |Γ12| cos φ̃s and, likewise,
ys = (|Γ12|/Γs) cos φ̃s. It is therefore possible to theoretically estimate them using the
HQE expansion discussed above. The authors of Ref. [68] find

∆ΓTh
s ≡ 2 |Γ12| = (0.087± 0.021) ps−1, (3.42)

yTh
s ≡

|Γ12|
Γs

= 0.067± 0.016, (3.43)

φ̃SM
s = (0.22± 0.06)◦. (3.44)

As mentioned earlier, New Physics contributions to Γ12 are expected to be small
because the b → cc̄s transitions, which give the dominant contribution, are strongly
constrained by experiment. Because in the Standard Model φ̃SM

s ≈ 0, if we assume Γ12

is unaffected by New Physics, it follows from

ys = yTh
s cos φ̃s (3.45)

that New Physics can only decrease the Bs decay width difference [74]. Furthermore,
under this assumption New Physics contributions to φs and φ̃s will come only from M12

and will be the same. If we let the parameter φNP
s represent New Physics contribution

to M12, we may express the phases defined in (3.31) and (3.32) by

φs = φSM
s + φNP

s , φ̃ = φ̃SM
s + φNP

s , (3.46)

with [75]

φSM
s ≡ 2 arg (V ∗tsVtb) = −2 βs = −(2.11± 0.08)◦. (3.47)

The experimental determination of the mixing parameters ys and φs is one of the
focus points of this thesis. Therefore for now it will suffice to point out that the most
accurate determination of ys and φs comes from the LHCb experiment’s analysis of the
Bs → J/ψφ decay [76], which gives

φs = (4.0± 5.2)◦ , (3.48)

ys = 0.075± 0.012. (3.49)

In addition, the S-wave modes of the decay Bs → J/ψK+K− have been used to rule
out the discrete ambiguity φs → φs + π and ys → −ys [77].

Thus a positive non-zero Bs decay width difference has been experimentally estab-
lished. This means that the lighter mass eigenstate, Bs,L, will on average decay faster
than the heavier one, Bs,H. Why this is the case can be understood in analogy to the
kaon system, where the mass and CP eigenstates are almost aligned. In this case one
mass-eigenstate is much shorter lived because it has exclusive access to the kinematically
favoured two pion CP-even decay modes. In the Bs system the situation is similar be-

cause the majority of the CKM-favoured modes Bs → D
(∗)
s D

(∗)
s are CP even. Therefore
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a non-zero width difference also suggests an alignment between mass and CP eigenstates
in the Bs system. Combining the expressions for the Bs CP and mass eigenstates in
(3.2) and (3.14) together with α as defined in (3.33) gives

(
|Bs,L〉
|Bs,H〉

)
= e−iφ̄s/2

(
cos(φ̄s/2) i sin(φ̄s/2)
i sin(φ̄s/2) cos(φ̄s/2)

)(
|Bs,+〉
|Bs,−〉

)
, (3.50)

where φ̄s ≡ φs − ξs + ξb. Thus the phase φ̄s determines the alignment of the two bases.
Note, however, that the presence of the convention-dependent quark phases ξb,s means
that the CP basis is only physically meaningful when considered in the context of a decay
where these phases cancel. The point to be made is that the decay width difference and
mixing phase are closely related, as also expressed in (3.45).

In this section we have discussed the six degrees of freedom that are present in the
mixing matrix M − i

2
Γ of (3.4) if we allow for CP violation, and expressed them in

terms of the six parameters

MBs , τBs , ∆Ms, ys, φs, φ̃s. (3.51)

The current HFAG experimental averages [73] for the Bs mass and mean lifetime are

MBs = (5.3663± 0.0006) GeV, (3.52)

τBs = (1.516± 0.011) ps, (3.53)

For completeness we also briefly discuss B0
d–B

0

d mixing, which can be parameterised
in an analogous way. A notable difference in this system is that the decay width differ-
ence is expected to be vanishingly small in the Standard Model [68]:

yTh
d =

(
23+5
−6

)
× 10−4. (3.54)

As a consequence, much of the phenomenology involving untagged observables that we
will discuss in the following sections for the Bs system does not apply for Bd. In the

Standard Model the B0
d–B

0

d mixing phase is given by

φSM
d ≡ 2 arg (V ∗tdVtb) = 2β. (3.55)

which is significantly larger than the Standard Model prediction for φs given in (3.47).
This phase is conventionally determined experimentally from an analysis of the decay
modes Bd → J/ψKS,L. Including corrections from doubly Cabibbo-suppressed penguin
topologies, which can be deduced from the flavour symmetry relation of these decays to
B0
d → J/ψπ0, gives the result [78]

φd = (42.4+3.4
−1.7)◦. (3.56)

The Bd counterpart of (3.32) is theoretically estimated to be φ̃SM
d = (−4.3± 1.4)◦ [68].

Finally, the current HFAG experimental averages for the remaining three parameters
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are [73]

∆Md = (0.510± 0.004) ps−1, (3.57)

MBd = (5.27958± 0.00017) GeV, (3.58)

τBd = (1.519± 0.007) ps. (3.59)

Thus the masses and mean lifetimes are similar, but the Bd meson system is seen to
oscillate at a much slower rate than the Bs mesons do.

3.2 Time-dependent observables

For a given decay mode Bs → f we naturally expect the distribution of observed events
to decrease with time. However, because this is a coupled system of oscillating flavour
states, we will see that the resulting distribution is not necessarily described by a usual
exponential function. Consider a sample NB0

s
of Bs mesons that are all initially in the

flavour state B0
s . Letting t represent their proper time, we define their time-dependent

decay rate as [79]

Γ(B0
s (t)→ f) ≡ 1

NB0
s

dN(B0
s (t)→ f)

dt
, (3.60)

where dN(B0
s (t) → f) represents the number of decays in the time window [t, t + dt].

The decay rate defined in this way accounts for the probability that the state may

already have decayed at the given time t. The time-dependent decay rate Γ(B
0

s(t)→ f)
is defined in an analogous way.

At t = 0 the definition in (3.60) reduces to the usual notion of an instantaneous
decay rate, which for a Bs → f transition is given by

Γ(Bs → f) ≡ 1

2MBs

∫
dΦ |〈f |H|Bs〉|2 , (3.61)

where dΦ is an integral over the final state’s phase space. Here Bs is used to denote
a flavour, mass or CP state, and each is assumed to have the same well-defined mass
MBs . As the phase space integral should not depend on the proper time, we may thus
express the time-dependent decay rate for any Bs(t)→ f transition as

Γ(Bs(t)→ f) ≡ 1

2MBs

∫
dΦ |〈f |H|Bs(t)〉|2 . (3.62)

We will now evaluate this time-dependent squared matrix element.

The time-dependence of the Bs flavour states can be found by combining equations
(3.14) and (3.9), which gives

|B0
s (t)〉 = g+(t)|B0

s 〉+ αg−(t)|B0

s〉,

|B0

s(t)〉 =
1

α
g−(t)|B0

s 〉+ g+(t)|B0

s〉, (3.63)
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where

g±(t) =
1

2

(
e−iλHt ± e−iλLt

)
. (3.64)

Let us consider a final state f to which both B0
s and B

0

s can decay. Then the following
convention independent quantity can be defined:

λf ≡ α
〈f |H|B0

s〉
〈f |H|B0

s 〉
= −e−iφs

[
1− 1

2
aSL

] 〈f |H|B0

s〉
〈f |H|B0

s 〉
, (3.65)

where we will typically assume aSL = 0 as discussed earlier. In terms of this parameter
the squared amplitudes for the Bs flavour states decaying to the final state f exhibit
the time evolution [80]

∣∣〈f |H|B0
s (t)〉

∣∣2 =
∣∣〈f |H|B0

s 〉
∣∣2 e

−t/τBs

2

{

+
(
1− |λf |2

)
cos(∆Ms t) + 2Im[λf ] sin(∆Ms t)

+
(
1 + |λf |2

)
cosh (ys t/τBs) + 2Re[λf ] sinh (ys t/τBs)

}
,

∣∣∣〈f |H|B0

s(t)〉
∣∣∣
2

= |α|−2
∣∣〈f |H|B0

s 〉
∣∣2 e

−t/τBs

2

{

−
(
1− |λf |2

)
cos(∆Ms t)− 2Im[λf ] sin(∆Ms t)

+
(
1 + |λf |2

)
cosh (ys t/τBs) + 2Re[λf ] sinh (ys t/τBs)

}
, (3.66)

This is in contrast to the mass-eigenstates, for which the time evolution to this final
state follows from (3.9), and is simply given by

|〈f |H|Bs,H(t)〉|2 = e−ΓH t |〈f |H|Bs,H〉|2 ,
|〈f |H|Bs,L(t)〉|2 = e−ΓL t |〈f |H|Bs,L〉|2 . (3.67)

3.2.1 To tag or not to tag

Being able to experimentally identify, or tag, the flavour states B0
s and B

0

s before they
decay is very useful for studying their oscillations. Unfortunately, flavour-tagging gener-
ally has a low experimental efficiency, and first requires many events to be recorded for

a given Bs → f transition. Given an equal number of produced B0
s and B

0

s mesons and
no attempt to distinguish between them, the quantity that is experimentally probed is
the untagged decay rate:

〈Γ(Bs(t)→ f)〉 ≡ Γ(B0
s (t)→ f) + Γ(B

0

s(t)→ f), (3.68)
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Figure 3.2: Left panel: illustration of the untagged decay rate 〈Γ(Bs(t) → f)〉 as a
sum of the mass-eigenstate exponential decay slopes. Right panel: illustration mixing-
induced CP asymmetry ACP from flavour-tagging. Neither plot represents the Standard
Model mixing parameters.

presuming both flavour states can decay to the final state f . The untagged decay rate
can also be expressed in terms of the mass-eigenstates [79]

〈Γ(Bs(t)→ f)〉 = Γ(Bs,H → f) e−ΓH t + Γ(Bs,L → f) e−ΓL t +O(aSL)

= [Γ(Bs,H → f) + Γ(Bs,L → f)]

× e−t/τBs
{

cosh (ys t/τBs) + sinh (ys t/τBs) Af∆Γ

}
+O(aSL), (3.69)

where

Af∆Γ ≡
Γ(Bs,H → f)− Γ(Bs,L → f)

Γ(Bs,H → f) + Γ(Bs,L → f)
, (3.70)

is the mass-eigenstate rate asymmetry. Thus if the lifetimes of the two mass eigenstates
differ, as we have observed they do, then a time-dependent analysis is sensitive not
only to the total summed rate, Γ(Bs,H → f) + Γ(Bs,L → f), but also to the mass-

eigenstate rate asymmetry Af∆Γ. This is illustrated in the left panel of Figure 3.2,
where the untagged decay rate is shown as the sum of two exponential functions with
different lifetimes and is thereby itself not an exponential function. The deviation of the
untagged rate from a pure exponential is what is experimentally observable. It probes
the parameters responsible: ys and Af∆Γ.

The mass eigenstate rate asymmetry Af∆Γ depends on the final state f and, as we
will discuss below, is potentially sensitive to New Physics. By substituting (3.66) into
(3.68) it follows that in terms of the convention independent parameter λf it is given by

Af∆Γ =
2 Re[λf ]

1 + |λf |2
+O(aSL). (3.71)
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For flavour-specific final states this asymmetry vanishes. In the absence of CP violation
it takes a maximal value of ±1 for CP eigenstate final states as we will discuss in
Section 3.2.2.

If the Bs flavour states are distinguished at birth using flavour-tagging, then it is
possible to construct the CP asymmetry:

ACP ≡
Γ(B0

s (t)→ f)− Γ(B
0

s(t)→ f)

Γ(B0
s (t)→ f) + Γ(B

0

s(t)→ f)

=
Cf cos(∆Ms t) + Sf sin(∆Ms t)

cosh (ys t/τBs) +Af∆Γ sinh (ys t/τBs)
, (3.72)

where

Cf ≡
1− |λf |2
1 + |λf |2

, Sf ≡
2Im[λf ]

1 + |λf |2
, (3.73)

and Af∆Γ is given in (3.71). From equations (3.71) and (3.73) it follows that the observ-
ables must satisfy the constraint4

|Cf |2 + |Sf |2 + |Af∆Γ|2 = 1. (3.74)

In the right panel of Figure 3.2 we illustrate the oscillating time-dependent decay rates
for the flavour states and the resulting asymmetry ACP. Note that it is not necessary
for the final state f to be a CP eigenstate final state. In Section 4.3 we discuss such an
example. Next we consider CP eigenstate final states.

3.2.2 CP-eigenstate final states

Let us consider a general final state f which is a CP eigenstate with eigenvalue ηf such
that

CP|f〉 = ηf |f〉. (3.75)

In this case the observable Cf defined in (3.73) is equal to the direct CP violation present
in the Bs → f decay mode:

Cf =
Γ(B0

s → f)− Γ(B
0

s → f)

Γ(B0
s → f) + Γ(B

0

s → f)
≡ Adir

CP(Bs → f). (3.76)

Given this context, the observable Sf can then be denoted Amix
CP (Bs → f) to indicate

that it probes mixing-induced CP violation.

4By defining the mass-eigenstate rate asymmetry as in (3.70) this constraint is technically only valid
up to O(aSL) corrections.
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Finding strategies to determine the Bs mixing phase φs is a central goal of this thesis.
To this end it is convenient to introduce the parameter ∆φf representing the phase shift
to φs coming from the decay amplitudes. To be precise, we define

∆φf ≡ arg

(
ηf
〈f |H|B0

s 〉
〈f |H|B0

s〉

)
− ξBs − ξs + ξb. (3.77)

We may then rewrite (3.65) as

λf = −ηf
√

1− Cf
1 + Cf

e−i(φs+∆φf ), (3.78)

and consequently [81]

Af∆Γ = −ηf
√

1− Cf cos(φs + ∆φf ), (3.79)

Sf = ηf
√

1− Cf sin(φs + ∆φf ). (3.80)

In the Standard Model we can use the unitarity of the CKM matrix to express the
amplitude for a B0

s → f decay in terms of two components with different CP violating
phases:

〈f |H|B0
s 〉 = Af1e

iδf1 eiϕ
f
1 + Af2e

iδf2 eiϕ
f
2 . (3.81)

Here Af1,2 and δf1,2 represent CP conserving strong amplitudes and their accompanying

phases, whereas ϕf1,2 are CP violating weak phases originating from the CKM matrix.
We thus have

〈f |H|B0

s〉
〈f |H|B0

s 〉
=
〈f |CP−1 CP HCP−1 CP|B0

s〉
〈f |H|B0

s 〉

= ηfe
i(ξBs+ξs−ξb)

[
e−iϕ

f
1 + hfe

iδf e−iϕ
f
2

eiϕ
f
1 + hfeiδf eiϕ

f
2

]
, (3.82)

where

hfe
iδf ≡ Af2

Af1
ei(δ

f
2−δ

f
1 ). (3.83)

In this notation the direct CP asymmetry of the Bs → f decay becomes:

Cf =
2hf sin δf sin(ϕf1 − ϕf2)

1 + 2hf cos δf cos(ϕf1 − ϕf2) + h2
f

. (3.84)

Thus for a Bs decay mode to exhibit direct CP violation, it must have at least two
contributing decay topologies with different strong phases. The phase shift ∆φf is given
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by [81, 82]

sin ∆φf =
sin 2ϕf1 + 2hf cos δf sin(ϕf1 + ϕf2) + h2

f sin 2ϕf2√
1− C2

f

(
1 + 2hf cos δf cos(ϕf1 − ϕf2) + h2

f

) , (3.85)

cos ∆φf =
cos 2ϕf1 + 2hf cos δf cos(ϕf1 + ϕf2) + h2

f cos 2ϕf2√
1− C2

f

(
1 + 2hf cos δf cos(ϕf1 − ϕf2) + h2

f

) , (3.86)

or more compactly as

∆φf = tan−1

[
sin 2ϕf1 + 2hf cos δf sin(ϕf1 + ϕf2) + h2

f sin 2ϕf2

cos 2ϕf1 + 2hf cos δf cos(ϕf1 + ϕf2) + h2
f cos 2ϕf2

]
. (3.87)

The twofold ambiguity for ∆φf arising from the latter expression can be resolved using
sign information from sin ∆φf or cos ∆φf .

3.3 Effective lifetimes

3.3.1 Single exponential fit

An effective lifetime for a Bs decay mode is obtained in practice by fitting a single
exponential function to its untagged rate. As an untagged rate is in general described
by two exponentials, corresponding to two mass-eigenstates with different lifetimes,
the single exponential fit is an approximation. Nonetheless, it is possible to derive an
analytic expression for this fitted effective lifetime, which we will denote τf . To this end
we follow the appendix of Ref. [83].

Let the untagged rate be the true Probability Distribution Function (PDF), and the
single exponent function the fitted PDF, such that

ftrue(t) ≡
A(t) 〈Γ(Bs(t)→ f)〉∫∞

0
A(t) 〈Γ(Bs(t)→ f)〉 dt, (3.88)

ffit(t; τf ) ≡
A(t) e−t/τf∫∞

0
A(t) e−t/τf dt

, (3.89)

where A(t) is an acceptance efficiency function. The likelihood or χ2 function for the fit
in question is then built using the above PDFs, and maximised or minimised, respec-
tively, in the limit of infinitesimally spaced bins. Specifically, for n events the following
functions are minimised:

− logL(τf ) = − n
∫ ∞

0

dt ftrue(t) log [ffit(t; τf )] , (3.90)

χ2(τf ) = n

∫ ∞

0

dt
[ftrue(t)− ffit(t; τf )]

2

ffit(t; τf )
, (3.91)



46 CHAPTER 3. OBSERVABLES OF THE Bs MESON SYSTEM

for a maximum likelihood and a least squares fit, respectively. In a modified least squares
fit, where data is used to estimate the error, the denominator in the χ2 integrand should
be replaced by ftrue(t). For the maximum likelihood fit, taking the infinitesimal bin
limit is equivalent to an unbinned fit.

The effective lifetime τf resulting from these fits is then given implicitly by the
formula: ∫∞

0
t e−t/τf A(t) dt∫∞

0
e−t/τf A(t) dt

=

∫∞
0
t g(t; τf )A(t) dt∫∞

0
g(t; τf )A(t) dt

, (3.92)

where

g(t; τf ) ≡




〈Γ(t)〉 : maximum likelihood
〈Γ(t)〉2 e t/τf : least squares
〈Γ(t)〉−1 e−2 t/τf : modified least squares.

If the untagged rate is taken to be a single exponential, then all fits agree and give the
correct lifetime.

If we assume a trivial acceptance function A(t) = 1 then a maximum likelihood fit
of the untagged rate returns the conventional definition of the effective lifetime [84]:

τf =

∫∞
0
t 〈Γ(Bs(t)→ f)〉 dt∫∞

0
〈Γ(Bs(t)→ f)〉 dt =

Γ(Bs,H → f)/Γ2
H + Γ(Bs,L → f)/Γ2

L

Γ(Bs,H → f)/ΓH + Γ(Bs,L → f)/ΓL

(3.93)

The final expression was first presented in Ref. [85]. In terms of the mass-eigenstate
rate asymmetry this effective lifetime is given, relative to the Bs mean lifetime, by

τf
τBs

=
1

1− y2
s

(
1 + 2Af∆Γ ys + y2

s

1 +Af∆Γ ys

)

= 1 +Af∆Γ ys +
[
2− (Af∆Γ)2

]
y2
s +O(y3

s). (3.94)

A measurement of the effective lifetime for a Bs → f decay thereby effectively probes
the combination Af∆Γ ys. In Section 3.5 we briefly discuss the consequences of non-trivial
acceptance function.

3.3.2 Lifetime contours in the φs–∆Γs plane

The effective lifetime relates the parameters ys and Af∆Γ. As the latter parameter is
potentially sensitive to the Bs mixing phase φs, an effective lifetime measurement can
give a contour in the φs–∆Γs plane. This section is based on the work presented in
Ref. [82]. Let us take a closer look at (3.94), which we can write as the following cubic
equation for the real parameter ys:

y3
s + a2y

2
s + a1ys + a0 = 0, (3.95)
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where

a0 ≡
τBs − τf
τfAf∆Γ

, a1 ≡
2 τBs − τf

τf
, a2 ≡

τBs + τf

τfAf∆Γ

. (3.96)

In order to solve this cubic equation, it is useful to rewrite it in the reduced form

(
ys +

a2

3

)3

+ P
(
ys +

a2

3

)
+Q = 0 (3.97)

with

P ≡ a1 −
a2

2

3
, Q ≡ 2a3

2

27
− a2a1

3
+ a0. (3.98)

Applying Cardano’s formula then yields the solutions

ys = −a2

3
+ eiω

3

√
R +
√
D + e−iω

3

√
R−
√
D (3.99)

with ω ∈ {0, 2π/3,−2π/3}, where

R ≡ −Q
2

=
1

54

(
9 a1 a2 − 27 a0 − 2 a3

2

)
(3.100)

D ≡
(
P

3

)3

+

(
Q

2

)2

=
1

108

(
27 a2

0 − 18 a0 a1 a2 + 4 a0 a
3
2 + 4 a3

1 − a2
1a

2
2

)
. (3.101)

For Af∆Γ = 0, this solution is not valid as (3.94) is then a quadratic equation in
ys. Furthermore, the above expressions may prove cumbersome to use in practice. A
convenient approximate solution is obtained by solving the expansion in (3.94) up to
quadratic order in ys:

ys ≈ −
1

2

[
Af∆Γ

2− (Af∆Γ)2

]
± 1

2

√√√√
[

Af∆Γ

2− (Af∆Γ)2

]2

+
4

τBs

[
τf − τBs

2− (Af∆Γ)2

]
. (3.102)

This quadratic solution agrees very well with the corresponding branches of the exact
solution (3.99) in the numerical analyses that we will consider.

For illustration we consider two Bs decays to CP eigenstates, Bs → f+ and Bs → f−,
with positive and negative CP eigenvalues, respectively. Further, we assume no CP
violation in these decay modes, so that

hf± = 0, ϕ
f±
1 = 0 (3.103)

for these decays, yielding Cf± = 0 and ∆φf± = 0. In Fig. 3.3, we show the lifetime
constraints that are compatible with the theoretical SM calculation of ∆Γs given in
(3.43). Using the Bs mean lifetime given in (3.53) results in the SM effective lifetimes
τf+ = 1.42 ps and τf− = 1.62 ps. The difference in behaviour for CP-odd and CP-even
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Figure 3.3: Illustration of the lifetimes that are compatible with the SM value of ∆Γs/Γs
given in (3.43) for CP-even and CP-odd final states f+ and f−, respectively. The decay
amplitudes are assumed to have no CP-violating phases. We also show the constraint
from the theoretical value of ∆ΓTh

s /Γs given in (3.43), as discussed in the text.

eigenstates is due to the non-linear dependence on ys in (3.94). Said differently, if (3.94)
is expanded and only terms up to linear order in ys are kept, the two curves in Fig. 3.3
would overlap. In Fig. 3.3, we have also included the theoretical constraint given in
(3.45).

The formalism developed above is also valid for non-CP eigenstates provided the
final state is accessible to both B0

s and B̄0
s so that mixing is possible. Examples of such

states are Bs → DsK
(∗), which we will study in Chapter 4. For these decays the CP

eigenvalue ηf in (3.79) should be replaced by (−1)L, where L denotes the relative orbital
angular momentum of the decay products [86].

3.4 Branching ratios

The sizable decay width difference of the Bs meson system has a subtle but important
effect on how a Bs branching ratio is defined, which we will address in this section. To
this end, we will follow the work presented in Ref. [83].

At hadron colliders a Bs branching ratio to a specific final state f is measured by
counting all untagged events over the accessible decay time, and normalizing this count
against a known branching ratio measured at a B-factory. It is therefore defined with
respect to the untagged time-dependent rate given in (3.69) as [79, 83]

BR(Bs → f) ≡ 1

2

∫ ∞

0

〈Γ(Bs(t)→ f)〉 dt =
1

2

[
Γ(Bs,H → f)

ΓH

+
Γ(Bs,L → f)

ΓL

]
. (3.104)

This definition gives the average branching ratio of the two mass eigenstates.
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From a theoretical perspective, squared amplitudes for Bs → f transitions are cus-
tomarily computed in the flavour basis rather than the mass eigenstate basis. However,
the lifetime of a non-mass eigenstate is not well defined, so instead the mean Bs lifetime
τBs , defined in (3.19), is substituted. This leads to the following definition for a Bs

branching ratio:

BR(Bs → f) ≡ τBs
2
〈Γ(Bs(t)→ f)〉|t=0 =

1

2

[
Γ(B0

s (t)→ f)
∣∣
t=0

1
2
(ΓH + ΓL)

+
Γ(B

0

s(t)→ f)
∣∣
t=0

1
2
(ΓH + ΓL)

]

=
1

2

[
Γ(Bs,H → f)
1
2
(ΓH + ΓL)

+
Γ(Bs,L → f)
1
2
(ΓH + ΓL)

]
, (3.105)

where the last equality can be directly compared to (3.104).

We observe that if ΓH = ΓL the definitions in (3.104) and (3.105) are equivalent.
This is effectively the case for Bd meson system, where yd ≈ 0 as given in (3.54). In
the Bs meson system, however, it has been experimentally established in (3.49) that
ys is non-zero. Thus in this case it becomes necessary to be able to convert between
the theoretical and experimental definitions. The dictionary to convert between these
definitions is compactly given by

BR(Bs → f) = BR(Bs → f)

[
1 + ysAf∆Γ

1− y2
s

]
. (3.106)

We see that the required correction depends on the final state specific quantity Af∆Γ.
This quantity can either be extracted from a time-dependent measurement (such as an
effective lifetime as we discuss in the previous section) or computed theoretically. In
Figure 3.4 we show the dictionary for various values of Af∆Γ.

The effective lifetime can be substituted into the branching ratio dictionary (3.106)
to give

BR(Bs → f) = BR(Bs → f)

[
2− (1− y2

s)
τ ff
τBs

]
. (3.107)

In this form the theoretical branching ratio is expressed entirely in terms of measurable
quantities.

Another application is given by Bs transitions into two vector mesons, such as Bs →
J/ψφ, Bs → K∗0K̄∗0 and Bs → D∗+s D∗−s . Here an angular analysis of the decay products
of the vector mesons has to be performed to disentangle the CP-even and CP-odd final
states, which affects the branching fraction determination in a subtle way, as recognized
in Refs. [87, 88]. Expressing the vector mesons by their linear polarization states, the
decay amplitude can be described in a transversity basis [89]. This basis, which we
label with the index k, consists of longitudinal (k = 0) and parallel (k = ‖) component
amplitudes that are CP even, ηk = +1, and of a perpendicular component (k =⊥) that
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Figure 3.4: Illustration of Eq. (3.106) for various values of Af∆Γ. We also show the
current LHCb measurement of ys [76].

is CP odd, ηk = −1. The generalization of Eq. (3.106) is then given by

BRV V =
(
1− y2

s

)

 ∑

k=0,‖,⊥

fV V,k

1 + ysAV V,k∆Γ


BR

V V
, (3.108)

where fV V,k = BR
V V,k

/BR
V V

and BR
V V ≡ ∑

k BR
V V,k

so that
∑

k fV V,k = 1. As
discussed in Ref. [82], assuming the SM structure for the decay amplitudes, we can
write

AV V,k∆Γ = −ηk
√

1− C2
V V,k cos(φs + ∆φV V,k), (3.109)

where CV V,k describes direct CP violation and ∆φV V,k is a non-perturbative hadronic
phase shift. In Ref. [87] these expressions are given for the decay Bs → K∗0K̄∗0 at lead-
ing order in ys, assuming φs = 0 and negligible hadronic corrections. The generalization
of Eq. (3.107) is given by

BRV V = BR
V V ∑

k=0,‖,⊥

[
2−

(
1− y2

s

) τV Vk
τBs

]
fV V,k, (3.110)

and does not require knowledge of the AV V,k∆Γ observables.

3.5 Experimental considerations

Additional subtleties arise in the experimental determination of Bs branching ratios
and effective lifetimes, in particular at a hadron collider environment where many final-
state particles are produced in the fragmentation. It is the purpose of this section to
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conceptually sketch some of the experimental issues that arise due to a non-zero Bs

decay width difference and the associated mass-eigenstate rate asymmetry Af∆Γ. In
practice these effects are much more complicated to properly account for.

At hadron collider experiments the separation of Bs signal decays from the back-
ground is typically based on the flight distance of the Bs meson or the impact parameter
of its decay products, which leads to a decay-time dependent acceptance efficiency. By
rejecting short-lived Bs meson candidates, the relative amounts of Bs,L and Bs,H mesons
in the remaining data sample change. As a result the branching ratio or effective lifetime
determinations are biased.

To illustrate this bias we consider a toy acceptance function, namely the step function

A(t) = θ(t− tmin)(1− θ(t− tmax)), (3.111)

with tmin = 0.5 ps and tmax = 15 ps. In the left panel of Figure 3.5 we show the
deviation that results between a maximum likelihood fit of the effective lifetime with
this acceptance versus its ideal functional dependence given in (3.93). We observe that
the resulting error for this exaggerated acceptance function is only of the order of 0.1%.

A hadron collider environment is too messy to account for all Bs decay events.
Therefore an experimental Bs branching ratio is measured relative to another branching
ratio, whose value is known from B–factory experiments. Specifically, an experiment
measures the ratio

BR(Bs → f)meas

BR(Bs,d → f ′)meas

≡
∫∞

0
A(t)〈Γ(Bs(t)→ f)〉 dt∫∞

0
A′(t)〈Γ(Bs,d(t)→ f ′)〉 dt, (3.112)

where Bs,d → f ′ is a decay with a known branching ratio BR(Bs,d → f ′), and A(′)(t) are
the acceptance functions of the decays in question. An extraction of the experimental
branching ratio

BR(Bs → f) =

(
εf
′

s,d

εfs

)
BR(Bs → f)meas

BR(Bs,d → f ′)meas

BR(Bs,d → f ′), (3.113)

thus requires an estimate of the efficiency ratio εf
′

s,d/ε
f
s , where

εfs,d ≡
∫∞

0
A(t) 〈Γ(Bs,d(t)→ f)〉 dt∫∞
0
〈Γ(Bs,d(t)→ f)〉 dt . (3.114)

A good choice for the reference decay BR(Bs,d → f ′) is one with a similar acceptance
efficiency to the considered decay. However, εs retains an a priori unknown dependence
on Af∆Γ. In the right panel of Figure 3.5 we show for illustration the bias that is
introduced if a Bd decay is chosen for the reference decay, assuming the same acceptance
function for both decays is given by (3.111) and, for example, a Standard Model estimate
of Af∆Γ = 0. In this scenario the error can be as large as ±3% if in fact Af∆Γ = ±1.
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Figure 3.5: The effect of a non-trivial acceptance efficiency on effective lifetime (left
panel) and branching ratio (right panel) determinations. See discussion in text.

It is also worth briefly considering the effect of a Bs production asymmetry on both
the effective lifetime and branching ratio of Bs → f decay. This asymmetry is expected
to be about 1% at the LHC [90]. Let us define this asymmetry as

Aprod =
NB0

s
−N

B
0
s

NB0
s

+N
B

0
s

, (3.115)

where NB0
s

and N
B

0
s

are the number of produced B0
s and B

0

s mesons at a given exper-

iment. It then follows that the time-dependent untagged decay rate defined in (3.68)
should be modified to

〈Γ̃(Bs(t)→ f)〉 ≡ [1 +Aprod] Γ(B0
s (t)→ f) + [1−Aprod] Γ(B

0

s(t)→ f), (3.116)

where we denote this modification with tilde. This gives

〈Γ̃(Bs(t)→ f)〉 = [Γ(Bs,H → f) + Γ(Bs,L → f)]

× e−t/τBs
{

cosh (ys t/τBs) + sinh (ys t/τBs) Af∆Γ

+ [cos(∆Ms t)Cf + sin(∆Ms t)Sf ]Aprod

}
+O(aSL). (3.117)

The modified branching ratio is given by

BR(Bs(t)→ f)
∣∣
prod

BR(Bs(t)→ f)
= 1 +Aprod

(
1− y2

s

1 + ysAf∆Γ

)(
Cf

1

1 + x2
s

+ Sf
xs

1 + x2
s

)

= 1 +Aprod(1 + ysAf∆Γ − y2
s)

1

xs
Sf +O(x−2

s , y3
s). (3.118)
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where xs ≡ τBs∆Ms = 26.9± 0.2 using the inputs from (3.41) and (3.53). Similarly, the
measured effective lifetime, assuming a trivial acceptance function, is given by

τf
∣∣
prod

τf
= 1−Aprod(1 + ysAf∆Γ − y2

s)
1

xs
Sf +O(x−2

s , y3
s). (3.119)

The suppression by the factor 1/xs can be intuitively attributed to the very rapid os-
cillations of the Bs flavour states, which have little influence when integrated over large
time-scales. At leading order, a production asymmetry of 1% and a maximal mixing-
induced CP violation of |Sf | = 1 would result in a deviation of 0.4% for both the
branching ratio and the effective lifetime. For a very precise effective lifetime measure-
ment this error may be relevant. However, for the effective lifetime measurements we
consider in this thesis, the Standard Model predictions for Sf are close to zero, thereby
suppressing the effect even further.
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Chapter 4

Extracting CKM angles from
penguins or trees

4.1 Introduction

In this chapter we consider various strategies, involving two different Bs decay modes,
for determining the angle γ of the unitary triangle (see the left panel of Figure 2.2).
Namely, we will consider strategies involving the time-dependent analyses of the decay
modes Bs → K+K− and Bs → D

(∗)
s K in Sections 4.2 and 4.3, respectively. In the

first decay mode QCD penguin topologies play a dominant role, whereas the second
mode is governed only by tree topologies. The former mode, in contrast to the latter,
is thereby also sensitive to possible New Physics effects that can enter virtually via
loops. Furthermore, a time-dependent analysis of the latter mode, as we will discuss,
is theoretically clean. It will therefore be interesting to eventually be able to compare
both results for γ.

The final state K+K− is a CP-eigenstate, which means both the B0
s and B

0

s mesons

can decay to it. The latter also holds for the final states D
±(∗)
s K∓, even though they are

not CP-eigenstates. As a result both decay modes are sensitive to B0
s–B

0

s mixing phase

φs as discussed in Section 3.1. In fact, in the Bs → D
(∗)
s K case it is the combination

φs + γ that can be extracted. An optimal determination of γ using either mode will
therefore require an accurate measurement of φs. Considering the recent progress of
determining φs with the decay mode Bs → J/ψφ as given in (3.48), this should be
achievable. In Chapter 5 we will also explore the potential of other Bs → J/ψ ss̄ modes
for measuring the phase φs.

For both the Bs → K+K− and Bs → D
(∗)
s K decay modes we can utilise U -spin

symmetry, as introduced in Section 2.4, to relate them to Bd decays whose observables
have been measured. The U -spin relation of the Bs → K+K− mode to the Bs → π+π−

mode is in fact crucial for controlling hadronic parameters and extracting γ. The optimal
determination, involving the time-dependent CP asymmetries of both modes, requires

55
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knowledge of both mixing phases φd and φs, as we already mentioned. However, we
will also consider strategies where we employ only the time-integrated branching ratio
from the Bs → K+K− mode. As a result we may reverse our method, and use the
time-dependent observables of Bs → K+K− to probe the mixing phase φs. The U -spin
relation of the Bs → D

±(∗)
s K∓ modes to their Bd → D±(∗)π∓ counterparts can be used

to predict the observables of the former in the Standard Model.

In this chapter we will in particular point out the utility of effective lifetimes, as
discussed in Section 3.3, for measuring the CKM angles and probing New Physics. The
effective lifetime of the Bs → K+K− mode for instance can give a contour in the φs–
∆Γs plane. For the Bs → D

(∗)
s K modes the mass-eigenstate rate asymmetries, which are

probed by effective lifetimes, can resolve the discrete ambiguities in determining φs + γ.

4.2 Extracting γ with penguin topologies: Bs → K+K−

The topologies of B0
s → K+K− are shown in Figure 4.1. This decay mode has the fea-

ture that its tree topologies, labeled current-current in the figure, are doubly Cabibbo
suppressed with respect to the penguin topologies. Therefore the QCD penguins domi-
nate this decay. As already mentioned in the introduction, this decay is related by the
U -spin symmetry of strong interactions to the decay Bd → π+π−. A major difference
between these two decay modes is that for the latter decay the tree topologies do not
receive a relative double Cabibbo suppression.

The novel feature of the U -spin relation under consideration with respect to other
SU(3)F flavour symmetry strategies is that there is a complete mapping of topologies
i.e. there are no residual topologies present in either decay that must be explained away
by invoking dynamical assumptions. Also the electroweak penguins are invariant under
U -spin, in contrast to the isospin and V -spin subgroups.

In Ref. [91] a strategy for determining the angle γ was proposed using this U -spin
pair of decays. This was developed upon further in Ref. [92] in light of new experimental
results, including a discussion of U -spin breaking tests. The work to be presented in
this section is based on Ref. [84]. We take an updated look at the extraction of γ given
new CP asymmetry measurements for both decay modes, as well as an updated form
factor ratio that enters the U -spin analysis.

It is unfortunately still too early to perform the optimal determination of γ presented
in Ref. [92]. However, we do perform a first determination using other U -spin related
inputs and find a remarkable agreement with complementary methods. The main new
feature we present is the utility of a time-dependent untagged Bs → K+K− measure-

ment, specifically in the form of an effective lifetime, to probe New Physics in B0
s–B

0

s

mixing. We provide Standard Model predictions for this observable, as well as for the
tagged time-dependent CP observables, which turn out to be quite robust with respect
to U -spin breaking errors.

The outline of this section is as follows: in Section 4.2.1 we present the relevant
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Figure 4.1: Current-current and penguin diagrams contributing to Bd → π+π− and
Bs → K+K− decays.

amplitudes of the decay modes in question and in Section 4.2.2 we discuss the deter-
mination of γ arising from the current data. In Section 4.2.3, we calculate the effective
lifetime τK+K− and study its correlation with the CP-violating B0

s–B̄
0
s mixing phase. A

similar analysis is performed for the mixing-induced CP asymmetry of B0
s → K+K− in

Section 4.2.4. In Section 4.2.5, we discuss and illustrate the optimal determination of γ
using the CP asymmetries of Bs → K+K−. Finally, we summarize our conclusions in
Section 4.4.

4.2.1 Amplitudes

In the Standard Model the Bs → K+K− and Bd → π+π− decays are governed by the
tree and penguin topologies shown in Figure 4.1. We observe that the former is related
to the latter by an interchange of s with d quarks. In terms of the strong QCD dynamics
contributing to these decay topologies an invariance under such an interchange would
imply a U -spin symmetry as defined in Section 2.4. Of course, because the s and d
quarks are not degenerate in mass, U -spin symmetry is only an approximate symmetry.

In order to utilise the U -spin symmetry we should first extract the CKM elements
entering each topology for both decays, as charged weak interactions badly break this
symmetry. To this end we define the CKM parameters

λ
(q)
j ≡ VjqV

∗
jb, (4.1)
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for j ∈ {u, c, t} and q ∈ {d, s}. We may thus write the general amplitude as

A(Bq → Uq Ūq) = λ(q)
u Au,(q)cc +

{u,c,t}∑

j

λ
(q)
j Aj,(q)pen , (4.2)

where Ud ≡ π− and Us ≡ K−. The unitarity of the CKM matrix implies

λ
(q)
t = −λ(q)

c − λ(q)
u , (4.3)

and thus

A(Bq → Uq Ūq) =
(
Au,(q)cc + Aut,(q)pen

)
λ(q)
u

(
1 +

λ
(q)
c

λ
(q)
u

A
ct,(q)
pen

A
u,(q)
cc + A

ut,(q)
pen

)
, (4.4)

where A
jt,(q)
pen ≡ A

j,(q)
pen − At,(q)pen for j ∈ {u, c}.

By taking q = d in (4.4) and using the Wolfenstein parameterization (see Section 2.1),
we that find the Bd → π+π− decay amplitude becomes [91]

A(Bd → π+π−) = eiγ C
[
1− d eiθe−iγ

]
, (4.5)

where

C ≡ Aλ3Rb

(
Au,dcc + Aut,dpen

)
, d eiθ ≡ 1

Rb

Act,dpen

Au,dcc + Aut,dpen

. (4.6)

Similarly, setting q = s in (4.4) gives

A(Bs → K+K−) =
√
ε eiγC ′

[
1 +

1

ε
d′eiθ

′
e−iγ

]
, (4.7)

where

C ′ ≡ Aλ3Rb

(
Au,scc + Aut,spen

)
, d′eiθ

′ ≡ 1

Rb

Act,spen

Au,scc + Aut,spen

, (4.8)

and

ε ≡ λ2

1− λ2
. (4.9)

The C(′) and d(′)eiθ
(′)

are CP-conserving hadronic parameters. The former are dominated
by the colour-allowed tree contributions and the latter by the ratio of QCD penguins to
these tree amplitudes.

An exact U -spin symmetry implies the relations [91]

d′ = d, θ′ = θ. (4.10)
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As was pointed out in Ref. [91], these relations are not affected by factorizable U -
spin-breaking corrections, i.e. the relevant form factors and decay constants cancel. An
exact U -spin symmetry also implies |C ′/C| = 1. Here, however, the corresponding decay
constants and form factors do not cancel, so that we obtain the following result in the
factorization approximation (see Section 2.3):

∣∣∣∣
C ′
C

∣∣∣∣
fact

=
fK
fπ

FBsK(M2
K ; 0+)

FBdπ(M2
π ; 0+)

(
M2

Bs
−M2

K

M2
Bd
−M2

π

)
. (4.11)

The QCD light-cone sum rule calculation of Ref. [93] gives

∣∣∣∣
C ′
C

∣∣∣∣
QCDSR

fact

= 1.41+0.20
−0.11. (4.12)

4.2.2 Early determination of γ

For the extraction of γ, it is useful to introduce the following ratio of theoretical branch-
ing ratios:

K ≡ 1

ε

∣∣∣∣
C
C ′
∣∣∣∣
2 [
MBs

MBd

Φ(Mπ/MBd ,Mπ/MBd)

Φ(MK/MBs ,MK/MBs)

τBd
τBs

] [
BR(Bs → K+K−)

BR(Bd → π+π−)

]

=
1

ε2

[
ε2 + 2εd′ cos θ′ cos γ + d′2

1− 2d cos θ cos γ + d2

]
(4.13)

where we have used (4.5) and (4.7). Here the phase space of the decay is given in by
the function

Φ(x, y) ≡
√

[1− (x+ y)2] [1− (x− y)2]. (4.14)

The Bs → K+K− theoretical branching ratio can be expressed terms of experimentally
measurable quantities using (3.107):

BR(Bs → K+K−) = BR(Bs → K+K−)

[
2− (1− y2

s)
τK+K−

τBs

]
. (4.15)

The B0
s → K+K− decay is now well established and the Heavy Flavour Averaging

Group (HFAG) gives the following average for its branching ratio [73]:

BR(Bs → K+K−) = (26.4± 2.8)× 10−6, (4.16)

The most accurate determination of the effective lifetime is currently given by LHCb [94]

τK+K− = [1.455± 0.046± 0.006] ps. (4.17)

Using the HFAG average BR(Bd → π+π−) = (5.15 ± 0.22) × 10−6 and the result of
(4.11) we find the numerical value

K
exp
= 52.1+11

−14. (4.18)
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The B0
s → K+K− and B0

d → π+π− decays are into CP-even eigenstates and thereby
give us access to the time-dependent CP asymmetry observables Adir

CP(Bq → f) and
Amix

CP (Bq → f) (as discussed in Section 3.2.2). For the B0
s → K+K− channel the follow-

ing CP asymetries have been measured for the first time by the LHCb experiment [95]

Adir
CP(Bs → K+K−) = 0.14± 0.11± 0.03,

Amix
CP (Bs → K+K−) = −0.30± 0.12± 0.04. (4.19)

Unfortunately these errors are still too large to perform an accurate determination of γ.
We will return to this point in Section 4.2.5.

The most accurate measurements of the CP-violating observables of the B0
d → π+π−

channel have been performed at the B factories, although LHCb has now also entered
the game [96]. By using (4.5), we can derive the expressions

Adir
CP(Bd → π+π−) = −

[
2 d sin θ sin γ

1− 2 d cos θ cos γ + d2

]
,

Amix
CP (Bd → π+π−) = +

[
sin(φd + 2γ)− 2 d cos θ sin(φd + γ) + d2 sinφd

1− 2 d cos θ cos γ + d2

]
,(4.20)

where φd denotes the CP-violating B0
d–B̄

0
d mixing phase given in (3.56).

The current experimental status of the CP violation in B0
d → π+π− is

Amix
CP (Bd → π+π−) =





0.68± 0.10± 0.03 (BaBar [97])
0.64± 0.08± 0.03 (Belle [98])
0.56± 0.17± 0.03 (LHCb [96])

HFAG
= 0.65± 0.06, (4.21)

Adir
CP(Bd → π+π−) =




−0.25± 0.08± 0.02 (BaBar [97])
−0.33± 0.06± 0.03 (Belle [98])
−0.11± 0.21± 0.03 (LHCb [96])

HFAG
= −0.29± 0.05.

(4.22)

where the final equality for both observables gives the HFAG average [73]1. We observe
that the large discrepancy between the BaBar and Belle results for Adir

CP(Bd → π+π−),
which was discussed in Ref. [84], has been resolved due to the updated Belle value
approaching the BaBar one.

A test of the B0
d → π+π− direct CP asymmetry is offered by the relation [99]

Adir
CP(Bd → π+π−) = −

(
fπ
fK

)2 [
BR(Bd → π∓K±)

BR(Bd → π+π−)

]
Adir

CP(Bd → π∓K±), (4.23)

which follows from SU(3) flavour symmetry and a neglect of exchange and penguin
annihilation topologies (see Section 2.4). The HFAG average for the direct CP violation
in B0

d → π−K+ is Adir
CP(Bd → π∓K±) = 0.082± 0.006 [73], which results in the estimate

Adir
CP(Bd → π+π−) = −0.26± 0.03. This result is seen to be in excellent agreement with
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Figure 4.2: The contours in the γ–d plane fixed through the CP-violating B0
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the HFAG average in (4.22), which gives confidence in our use of flavour symmetries for
these decays.

In order to determine γ, we can convert the direct and mixing-induced CP asymmetry
of the B0

d → π+π− channel into a theoretically clean contour in the γ–d plane; the
corresponding formulae are given in Ref. [91]. Furthermore, using the U -spin relation
(4.10) in (4.13), we can determine a second contour. The intersection of both contours
then allows us to determine γ and d, so that we can also extract the strong phase θ. In
Figure 4.2, we show the situation arising for the current data. The plot on the left-hand
side shows the 1σ error bands and the 39% and 68% confidence regions arising from a
χ2 fit, whereas the plot on the right-hand side illustrates the impact of U -spin-breaking
corrections to (4.10), which we have parameterized as

ξ ≡ d′/d = 1± 0.15, (4.24)

∆θ ≡ θ′ − θ = ±20◦. (4.25)

1The updated LHCb results given in Ref. [95] have not yet been included in this HFAG average.
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As discussed in Ref. [92], the discrete ambiguities for γ can be resolved using arguments
from factorisation, yielding

γ = (67.7+4.5
−5.0|input

+5.0
−3.7|ξ+0.1

−0.2|∆θ)◦ (4.26)

and

d = 0.501+0.069
−0.076|input

+0.101
−0.074|ξ+0.002

−0.005|∆θ, θ = (150.4+6.4
−8.2|input

+3.8
−3.9|ξ+0.1

−0.2|∆θ)◦, (4.27)

where the input errors are the 68% confidence intervals of the χ2 fit. In Figure 4.3, we
show the error budget for γ coming from the individual input quantities. We observe that
K and Amix

CP (Bd → π+π−) have a similar impact on the error, while Adir
CP(Bd → π+π−)

plays a significantly less important role. Also φd has a small but non-negligible impact
on the overall error. Its error, driven mostly by the uncertainty of penguin effects,
can be improved in the future using a flavour symmetry strategy involving the decay
B0
s → J/ψKS [100].

The extracted value given in (4.26) is in excellent agreement with the fits of the
unitarity triangle:

γ =

{
(67.7+4.1

−4.3)◦ (CKMfitter [75])
(69.2± 3.2)◦ (UTfit [101]).

(4.28)

We may therefore conclude that no large New Physics effects enter the decay amplitudes.
In the next section we will therefore assume the Standard Model amplitude expressions
given in (4.7) and (4.5) to hold. In Section 4.2.5 we return to the optimal determination
of γ using the time-dependent CP asymmetry observables from Bs → K+K−.

4.2.3 Mass-eigenstate rate asymmetry

Due to the sizable decay width difference of the Bs meson system discussed in Chapter 3,
a time-dependent analysis of the decay Bs → K+K− can probe the mass-eigenstate rate
asymmetry A∆Γ(Bs → K+K−) as defined in (3.70). We note that this observable is not
independent from the other two CP asymmetry observables, Adir

CP(Bs → K+K−) and
Amix

CP (Bs → K+K−), due to the relation given in (3.74). It is, however, the only one of
the three that can be extracted with an untagged time-dependent decay sample. Using
the parametrization in (4.7), we obtain from (3.71) and the associated formalism the
expression

A∆Γ(Bs → K+K−) = −
[
d′2 cosφs + 2ε d′ cos θ′ cos(φs + γ) + ε2 cos(φs + 2γ)

d′2 + 2ε d′ cos θ′ cos γ + ε2

]
. (4.29)

We could proceed to use the results given in (4.26) and (4.27) in combination with
the U -spin symmetry assumption to give a numerical estimate of A∆Γ(Bs → K+K−)
for a given value of the B0

s–B̄
0
s mixing phase φs. However, in the original analysis of

Ref. [84] (on which this section is based), there was a discrepancy present between the
BaBar and Belle values of Adir

CP(Bd → π+π−), as we discussed above. This motivated us
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to consider an alternative strategy to estimate the hadronic parameters d′ and θ′ that
does not rely on using this direct CP asymmetry as an input. Although the discrepancy
is now resolved, we will nonetheless continue with the alternative strategy because it
highlights the consistency of the flavour symmetry picture.

In this alternative strategy, we assume that γ is known, with a value of γ = (68±7)◦

in agreement with (4.26) and the fits of the UT in (4.28). It is then possible to combine
K, as given in (4.13), with the U -spin relation (4.10) and the direct CP asymmetry,

Adir
CP(Bs → K+K−) =

2εd′ sin θ′ sin γ

d′2 + 2εd′ cos θ′ cos γ + ε2
, (4.30)

to determine d′ and cos θ′. Parametrizing the U -spin-breaking effects for d(′) through
(4.24), the corresponding formulae from which d′ and cos θ′ can be extracted are

2d′ cos θ′ =
−d′2 + ε2 [K(1 + d′2ξ−2)− 1]

ε cos γ (1 + εξ−1K)
, (4.31)

d′2 = ε2
[
b±
√
b2 − ac
a

]
, (4.32)

with

a = ε2ξ−2
(
1 + εξ−1

)2
(Adir

CP)2K2 cot2 γ +
(
1− ε2ξ−2K

)2
, (4.33)

b = − εξ−1
(
1 + εξ−1

)2
(Adir

CP)2K2 cot2 γ + 2 cos2 γ
(
1 + εξ−1K

)2
(4.34)

+ (K − 1)(1− ε2ξ−2K), (4.35)

c =
(
1 + εξ−1

)2
(Adir

CP)2K2 cot2 γ + (K − 1)2, (4.36)

where Adir
CP ≡ Adir

CP(Bs → K+K−). The U -spin-breaking effects of θ(′), as given in
(4.25), are difficult to include in the above analytic expressions but are straightforward
to calculate numerically.

The CP-violating observables of the B0
s → K+K− channel given in (4.19) are not

sufficiently accurate for the numerical analysis we have in mind. However, as the B0
d →

π−K+ and B0
s → K+K− channels differ only in their spectator quarks, we expect

Adir
CP(Bs → K+K−) ≈ Adir

CP(Bd → π∓K±) = 0.082± 0.006. (4.37)

In order to take possible corrections into account, we increase the error generously and
use

Adir
CP(Bs → K+K−) = 0.082± 0.04 (4.38)

in the following numerical analysis. This estimate is consistent with the LHCb result
given in (4.19).

Given all of these inputs and including the U -spin breaking effects in (4.24) and
(4.25), we arrive at the following results for the hadronic parameters:

d′ = 0.505+0.080
−0.097, cos θ′ = −0.920+0.107

−0.067, (4.39)
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Figure 4.4: Left panel: correlation between A∆Γ(Bs → K+K−) and sinφs. Right
panel: errors associated with the input observables/parameters, zoomed in on the SM
region φs ∈ [−17◦, 17◦] and overlayed on top of one another. The legend lists the error
contributions from largest to smallest. In both plots we also show for comparison the
determination of φs from the the Bs → J/ψφ analysis as given in (3.48).

where all errors were added in quadrature. A comparison with the results given in
(4.27) under the U -spin assumption of (4.10) reveals a very consistent flavour symmetry
picture.

Using the SM prediction for the B0
s–B̄

0
s mixing phase given in (3.47) we find the

following prediction for the mass-eigenstate rate asymmetry:

A∆Γ(Bs → K+K−)
∣∣∣
SM

= − 0.97200+0.0119
−0.0056

∣∣∣
K

+0.0047
−0.0046

∣∣∣
γ

+0.00004
−0.00002

∣∣∣
Adir

CP

+0.0022
−0.0031

∣∣∣
ξ

+0.0015
−0.0006

∣∣∣
∆θ

= − 0.972+0.013
−0.008, (4.40)

where all errors have again been combined in quadrature. Particularly interesting is
the small influence of the U -spin breaking errors and direct CP violation, Adir

CP(Bs →
K+K−), on the total error. In Figure 4.4 we treat φs as a free parameter and show
the correlation between A∆Γ(Bs → K+K−) and sinφs, as well as errors related to the
input quantities overlayed on top of one another and centred on the central value. We
observe that A∆Γ(Bs → K+K−) is very robust with respect to the input errors for the
whole range of φs. However, recent determinations of φs using the Bs → J/ψφ mode, as
given in (3.48), are already quite constraining, which we have indicated with 1σ bands
in these plots.

As discussed in Section 3.3, the observableA∆Γ(Bs → K+K−) can be experimentally
probed by fitting an exponential function to the time-dependent untagged decay rate.
The resulting observable is the effective lifetime and is given by

τK+K− =
τBs

1− y2
s

[
1 + 2A∆Γ(Bs → K+K−)ys + y2

s

1 +A∆Γ(Bs → K+K−)ys

]
(4.41)

We can estimate the effective lifetime in the Standard Model by combining (4.40) with
the theoretical estimate of ys given in (3.43). We thus obtain the following SM prediction
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of the effective lifetime ratio:

τK+K−

τBs

∣∣∣
SM

= 0.9398+0.0010
−0.0006

∣∣∣
A∆Γ

+0.0137
−0.0132

∣∣∣
∆Γs/Γs

= 0.940+0.014
−0.013, (4.42)

where the errors have been added in quadrature. Combining this with the measurement
of τBs given in (3.53) gives a SM prediction for the lifetime of

τK+K−|SM = (1.425± 0.023) ps. (4.43)

This prediction is compatible with the LHCb measurement given in (4.17).

It is also possible to use the measured Bs → K+K− effective lifetime from (4.17)
together with the measurement of ys given in (3.49) to give the estimate:

A∆Γ(Bs → K+K−)
∣∣∣
τKK

= −0.65+0.38
−0.36

∣∣∣
τKK

+0.05
−0.08

∣∣∣
ys

+0.08
−0.08

∣∣∣
τBs

= −0.65+0.39
−0.38. (4.44)

Alternatively, in Ref. [96] the Bs → K+K− CP asymmetries are fitted for assuming the
relation

Adir
CP(Bs → K+K−)2 +Amix

CP (Bs → K+K−)2 +A∆Γ(Bs → K+K−)2 = 1. (4.45)

Then, using the CP symmetry measurements given in (4.19), we find

|A∆Γ(Bs → K+K−)|
∣∣∣
CP meas

= 0.985+0.000
−0.021

∣∣∣
Adir

CP

+0.015
−0.051

∣∣∣
Amix

CP

= 0.985+0.015
−0.055. (4.46)

It would be interesting to compare the precision found for this observable if the relation
in (4.45) is not included in the experimental fit.

Following the general formalism set up in Section 3.2.2 for CP-eigenstate final states,
we may express the mass-eigenstate rate asymmetry as

A∆Γ(Bs → K+K−) = −
√

1−Adir
CP(Bs → K+K−) cos (φs + ∆φK+K−) . (4.47)

In (3.87) the hadronic phase shift ∆φK+K− is expressed in terms of the parameters

hK+K− = d/ε, δK+K− = θ, φK
+K−

1 = γ, φK
+K−

2 = 0. (4.48)

and thus, using the numerical analysis of this section, evaluates to

∆φK+K− = −
(
10.7+2.8

−2.1

)◦
, (4.49)

Combining this input with (4.38), the remaining degree of freedom in A∆Γ(Bs →
K+K−) is φs. Therefore, as outlined in Section 3.3.2, the effective lifetime measure-
ment gives a contour in the φs–∆Γs plane. In Figure 4.5 we show this contour, along
with the corresponding experimental errors of the effective lifetime measurement (left
panel) and the effect of the hadronic phase shift (right panel). In Chapter 5 we also add
the effective lifetime for a CP-odd final state to this plane.
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Figure 4.5: Measurement of the Bs → K+K− lifetime projected onto the φs–∆Γs
plane. Error bands correspond to the effective lifetime measurement (left panel) and
the hadronic phase shift and mean Bs lifetime (right panel).

4.2.4 Mixing-induced CP violation

The final observable that is offered by the B0
s → K+K− channel is its mixing-induced

CP asymmetry (see Section 3.2.2). It takes the following form [91]:

Amix
CP (Bs → K+K−) = +

[
d′2 sinφs + 2εd′ cos θ′ sin(φs + γ) + ε2 sin(φs + 2γ)

d′2 + 2εd′ cos θ′ cos γ + ε2

]
. (4.50)

The structure of this expression is very similar to (4.29), i.e. the strong phase enters only
as cos θ′. Consequently, we can use the formulae given in the previous section to perform
an analysis of Amix

CP (Bs → K+K−) that is analogous to that of A∆Γ(Bs → K+K−). For
the SM we obtain the prediction

Amix
CP (Bs → K+K−)

∣∣∣
SM

= − 0.220+0.027
−0.047

∣∣∣
K

+0.021
−0.020

∣∣∣
γ

+0.019
−0.011

∣∣∣
Adir

CP

+0.014
−0.010

∣∣∣
ξ

+0.003
−0.006

∣∣∣
∆θ

= − 0.220+0.042
−0.054, (4.51)

where the errors have been combined in quadrature. This prediction can now be directly
compared to (4.19), where it is observed to be compatible. In Figure 4.6, we show the
dependence of Amix

CP (Bs → K+K−) on sinφs, with a range of φs points marked explicitly.
The latter quantity is conventionally measured through the CP-violating effects in the
B0
s → J/ψφ angular distribution, as discussed above. The error bars on the SM point

correspond to those given above. This plot illustrates two interesting features:

• Amix
CP (Bs → K+K−) offers a complementary tool to search for footprints of a NP

contribution to the phase φs, and deviates already significantly from the SM value
for moderate values of this phase.

• Amix
CP (Bs → K+K−) allows us to resolve the twofold ambiguity for the value of φs

resulting from the analyses of B0
s → J/ψφ. In particular, we can then distinguish
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Figure 4.6: The correlation between Amix
CP (Bs → K+K−) and sinφs. The error band

takes the uncertainties due to the input parameters and observables into account, as
well as possible U -spin-breaking corrections. The numbers label the values of φs. The
blue band gives the LHCb measurement of this quantity as given in (4.19).

between the SM case with φs ∼ 0◦ and a NP scenario with φs ∼ 180◦, both
leading to small CP violation in B0

s → J/ψφ. However, the S-wave modes of the
Bs → J/ψK+K− decay have already been used to resolve this ambiguity [77].

The correlation in Figure 4.6 was first discussed in Ref. [92]. Here we have gone beyond
that analysis by making a detailed analysis of the corresponding errors and using γ as an
input. As in the previous section, we observe that the calculation is remarkably stable
with respect to possible U -spin-breaking corrections and input errors. In Figure 4.7, we
show the error budget corresponding to the various input parameters and observables:
for the SM case we give both a pie chart of the relative contribution of each error and
show the errors overlayed on top of one another and centred on the central value.

4.2.5 Optimal determination of γ

We will now discuss the optimal strategy for determining γ. This will be the major
application of the Bs → K+K− decay mode once more precise measurements of its
tagged time-dependent CP observables Adir

CP(Bs → K+K−) and Amix
CP (Bs → K+K−)

have been made. The idea is that these observables can be converted into a clean contour
in the γ–d′ plane, in analogy the γ–d contour corresponding to the time-dependent CP
observables of Bd → π+π− shown in Figure 4.2. The single U -spin relation d = d′ is
then sufficient to determine γ and d from the intersection of the contours. Also θ and
θ′ can then be determined independently, which will allow us to test the validity of the
U -spin symmetry assumption. Furthermore, the quantity K has not yet entered this
strategy. It can therefore be used to measure the ratio |C ′/C|, and compare this with
the theoretical calculation given in (4.12).
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In Figure 4.8, we illustrate the corresponding contour in the γ–d′ plane To do so, we
make use of the γ analysis of Section 4.2.2. Using the values of γ, d and θ in (4.26) and
(4.27), and neglecting the corresponding U -spin-breaking errors, we obtain

Adir
CP(Bs → K+K−) = 0.094+0.044

−0.039, (4.52)

Amix
CP (Bs → K+K−)|SM = −0.217+0.037

−0.036. (4.53)

These numbers are fully consistent with (4.38) and (4.51), which rely on different inputs,
and thereby further support our numerical analysis. The green band in Figure 4.8,
referring to the CP-violating B0

s → K+K− observables, corresponds to the central
values in (4.52) and (4.53) and their 1σ ranges. The B0

d → π+π− contour is the same as
in the left panel of Figure 4.2, and, in order to guide the eye, we have also included the
central value of the contour fixed through K and Amix

CP (Bd → π+π−). It is interesting to
observe that the B0

s → K+K− and B0
d → π+π− contours are intersecting with a large

angle, thereby leading again to a situation that is very robust with respect to possible
U -spin-breaking corrections to d′ = d. In the right panel of Figure 4.8 we show the
contour resulting from the measured CP observables of Bs → K+K− given in (4.19).
This illustrates our earlier point that for an optimal determination of γ we are eagerly
awaiting more precise measurements from LHCb.

4.3 Extracting γ from tree topologies: Bs → D
(∗)
s K

Two interesting features of Bs → D
(∗)±
s K∓ decays are that they are governed only by

tree diagram topologies and that both flavour states, B0
s and B

0

s, can decay to each of
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them. The dominant colour-allowed tree diagram topologies of these decays are shown
in Figure 4.9. The latter feature leads to interference effects between Bs mixing and
the decay. By measuring the time-dependent observables of one of these decay modes
and its CP conjugate, for example Bs → D+

s K
− and Bs → D−s K

+, a theoretically clean
determination of the CP violating phase φs+γ is possible [102, 103]. As we discussed in
the introduction of this chapter, the phase φs should be determined quite accurately from
separate analyses in advance of the decays discussed here. Thus it should be possible to
extract γ from these decay modes. A central question is whether this value will agree
with γ determinations from decays with penguin contributions from Section 4.2.

This section is based on the work presented in Ref. [86]. We will assume throughout
that the relevant decay amplitudes are described by the Standard Model. Applying the
formalism developed in Ref. [103], we shall explore the Bs → D

(∗)±
s K∓ channels both in

view of recent experimental developments as well as measurements to be performed by
the LHCb collaboration in this decade.

Measurements of the Bs → D±s K
∓ branching ratios are available from the CDF

[104], Belle [105] and LHCb [106] collaborations:

BR(Bs → D±s K
∓)

BR(Bs → D±s π
∓)

=





0.097± 0.018 (stat.)± 0.009 (syst.) [CDF],
0.065+0.035

−0.029 (stat.) [Belle],
0.0646± 0.0043 (stat.)± 0.0025 (syst.) [LHCb];

(4.54)

the errors of the Belle result are dominated by the small Bs → D±s K
∓ data sample.

We will discuss the impact of ys on this ratio of CP-averaged experimental branching
ratios and convert the experimental numbers into constraints on the hadronic parameter
characterizing the interference effects discussed above.

The LHCb experiment has also reported a first measurement of the time-dependent
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CP asymmetries for the Bs → D±s K
∓ [107] decays. However, the uncertainties are

unfortunately still too large to perform an extraction of φs + γ, as we will discuss in
Section 4.3.4. Instead, following Ref. [103], the observables of the Bs → D

(∗)±
s K∓

channels can be related to those of the Bd → D(∗)±π∓ decays through the U -spin
symmetry of strong interactions. We shall use B-factory data obtained by the BaBar
and Belle collaborations for the latter decays, together with further constraints from
Bd → D±s π

∓ modes, to make predictions for the Bs → D
(∗)±
s K∓ observables. These

will serve as a guideline for the expected experimental picture. In this analysis, we
specifically find that – thanks to the sizable value of ys – untagged data samples of
Bs → D

(∗)±
s K∓ decays can be efficiently combined with mixing-induced CP asymmetries

of tagged analyses to extract φs + γ in an unambiguous way.

The outline is as follows: in Section 4.3.1, we discuss untagged measurements of
the Bs → D

(∗)±
s K∓ decays, namely their branching ratios and effective lifetimes. In

Section 4.3.2, we apply SU(3) flavour symmetry to extract the hadronic parameters

characterizing the Bs → D
(∗)±
s K∓ decays from the B-factory data for the Bd → D(∗)±π∓

and Bd → D±s π
∓ channels. In Section 4.3.3, we discuss the extraction of φs+γ from the

tagged and untagged Bs → D
(∗)±
s K∓ observables, with a special emphasis on resolving

the discrete ambiguities. The hadronic parameters obtained in Section 4.3.2 are used in
Section 4.3.4 to predict the relevant Bs → D

(∗)±
s K∓ observables, which then serve as an

input for exploring the experimental prospects. We give our conclusions in Section 4.4.
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4.3.1 Untagged observables

Following Section 3.2, the time-dependent, untagged Bs → D
(∗)+
s K− decay rates can be

written as follows [103]:

〈Γ(Bs(t)→ D(∗)+
s K−)〉 ≡ Γ(B0

s (t)→ D(∗)+
s K−) + Γ(B̄0

s (t)→ D(∗)+
s K−)

= Re−t/τBs
[
cosh

(
ys

t

τBs

)
+A∆Γ sinh

(
ys

t

τBs

)]
, (4.55)

where
R ≡ 〈Γ(Bs(t)→ D(∗)+

s K−)〉
∣∣
t=0

= 〈Γ(Bs(t)→ D(∗)−
s K+)〉

∣∣
t=0

. (4.56)

The analogous Bs → D
(∗)−
s K+ rates can be straightforwardly obtained from (4.55) by

replacingA∆Γ withA∆Γ. The mass-eigentstate rate asymmetries entering both untagged
rate are given by

A∆Γ = −(−1)L
2xs

1 + x2
s

cos(φs+γ+ δs), A∆Γ = −(−1)L
2xs

1 + x2
s

cos(φs+γ− δs), (4.57)

where L denotes the angular momentum of the final state2. The hadronic parameter
xs ∝ Rb quantifies the strength of the interference effects between the B0

s → D
(∗)+
s K−

and B̄0
s → D

(∗)+
s K− decay processes induced through B0

s–B̄
0
s mixing, and δs is an

associated CP-conserving strong phase difference [103].

As discussed in detail in Section 3.4, the branching ratios of Bs decays are determined
experimentally as time-integrated untagged rates [79, 83]:

BR(Bs → D(∗)±
s K∓) ≡ 1

2

∫ ∞

0

〈Γ(Bs → D(∗)±
s K∓)〉 dt. (4.58)

The theoretical branching ratio is given with respect to this measurement by

BR(Bs → D(∗)+
s K−) =

[
1− y2

s

1 +A∆Γ ys

]
BR(Bs → D(∗)+

s K−), (4.59)

where an analogous expression involving A∆Γ holds for the D
(∗)−
s K+ final states. It is

interesting to note that we have

BR(Bs → D(∗)+
s K−) = BR(Bs → D(∗)−

s K+) (4.60)

thanks to the expression in (4.56), which implies

BR(Bs → D
(∗)+
s K−)

BR(Bs → D
(∗)−
s K+)

=
1 +A∆Γ ys

1 +A∆Γ ys
. (4.61)

2For simplicity, we did not introduce a label to distinguish between D+
s K

− and D∗+s K−.
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Consequently, an established difference between the experimental Bs → D
(∗)−
s K+ and

Bs → D
(∗)+
s K− branching ratios would imply a difference between the A∆Γ and A∆Γ

observables (see also Ref. [108]):

BR(Bs → D
(∗)+
s K−)− BR(Bs → D

(∗)−
s K+)

BR(Bs → D
(∗)+
s K−) + BR(Bs → D

(∗)−
s K+)

= ys

[ A∆Γ −A∆Γ

2 + ys(A∆Γ +A∆Γ)

]
. (4.62)

In order to relate theory to experiment beyond an accuracy of order ys ∼ 0.1, we
need theoretical input to determine A∆Γ and A∆Γ. In Section 4.3.2, we will see that this
results in large uncertainties for these observables. However, as discussed in Section 3.4,
this input can be avoided with the help of the effective lifetimes, defined as

τeff ≡
∫∞

0
t 〈Γ(Bs → D

(∗)+
s K−)〉dt

∫∞
0
〈Γ(Bs → D

(∗)+
s K−)〉dt

=
τBs

1− y2
s

[
1 + 2A∆Γ ys + y2

s

1 +A∆Γ ys

]
, (4.63)

with an analogous expression for the lifetimes τ eff of the CP-conjugate D
(∗)−
s K+ final

states. We then obtain

BR(Bs → D(∗)+
s K−) =

[
2− (1− y2

s) τeff

]
BR(Bs → D(∗)+

s K−), (4.64)

and correspondingly for the D
(∗)−
s K+ final states. These general relations would also

hold if the Bs → D
(∗)±
s K∓ decay amplitudes were to receive contributions from physics

beyond the SM. However, this is not a plausible scenario due to the tree-diagram nature
of these decays.

Let us now have a closer look at the ratio (4.54). Since the B0
s → D−s π

+, B̄0
s → D+

s π
−

decays are flavour-specific, their A∆Γ, A∆Γ observables vanish. The branching ratios
entering (4.54) are averages of the experimental branching ratios over the final states:

BR(Bs → D±s K
∓) ≡ 1

2

[
BR(Bs → D+

s K
−) + BR(Bs → D−s K

+)
]
, (4.65)

with an analogous expression for BR(Bs → D±s π
∓). Using (4.56) and its Bs → D±s π

∓

counterpart yields

BR(Bs → D
(∗)±
s K∓)

BR(Bs → D
(∗)±
s π∓)

=

[
1 + ys

(A∆Γ +A∆Γ

2

)]
BR(Bs → D

(∗)±
s K∓)

BR(Bs → D
(∗)±
s π∓)

. (4.66)

In the language of factorization, as discussed in Section 2.3, the decays B̄0
s →

D
(∗)+
s K− and B̄0

s → D
(∗)+
s π− are classed as heavy-light. They are therefore expected to

factorise well [37, 36, 109, 110, 111, 38, 112], which is also supported by experimental
data [113]. In Figure 4.10, we illustrate the decay topologies characterizing these de-

cays. Using SU(3) flavour symmetry to relate the B̄0
s → D

(∗)+
s K− amplitude to that of

the B̄0
s → D

(∗)+
s π− channel (and correspondingly for the CP-conjugate processes), the
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ratio of the theoretical branching ratios in (4.66) allows the extraction of the hadronic
parameter xs [103]:

xs =

√√√√
[C(∗)

ε

][
BR(Bs → D

(∗)±
s K∓)

BR(Bs → D
(∗)±
s π∓)

]
− 1. (4.67)

The small CKM parameter ε is defined in (4.9), while the C(∗) coefficient can be written
in the following form:

C(∗) ≡
Φ
D

(∗)
s π

Φ
D

(∗)
s K

N (∗)
F N (∗)

a N (∗)
E , (4.68)

where the Φ are phase-space factors defined in (4.14), and

N (∗)
F ≡

[
fπ
fK

F
Bs→D(∗)

s
(M2

π)

F
Bs→D(∗)

s
(M2

K)

]2

(4.69)

describes factorizable SU(3)-breaking corrections through the ratios of decay constants
fK/fπ = 1.197± 0.006 [17] and form factors3. On the other hand, the non-factorizable
SU(3)-breaking corrections affecting the ratio of the colour-allowed tree amplitudes

governing the B̄0
s → D

(∗)+
s K− and B̄0

s → D
(∗)+
s π− channels are described by

N (∗)
a ≡

∣∣∣∣∣
a1(D

(∗)
s π)

a1(D
(∗)
s K)

∣∣∣∣∣

2

. (4.70)

Finally, N (∗)
E takes into account that the B̄0

s → D
(∗)+
s K− decays receive also contri-

butions from exchange topologies, which have no counterparts in the B̄0
s → D

(∗)+
s π−

3For the calculation of the form-factor ratio in (4.69) we have assumed that the q2 dependence is
identical to that for Bd → D(∗)−`ν decays [114].
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processes, as can be seen in Figure 4.10:

N (∗)
E ≡

∣∣∣∣∣
T
D

(∗)+
s K−

T
D

(∗)+
s K−

+ E
D

(∗)+
s K−

∣∣∣∣∣

2

. (4.71)

Following the phenomenological analysis of Ref. [113], and using experimental data

to make factorization tests and to constrain the exchange topologies, we find N (∗)
a ∼

1.00±0.02 and N (∗)
E ∼ 0.97±0.08. The exchange contributions can be probed further in

the future through the B̄0
s → D(∗)+π− channel, which receives only contributions from

such topologies [103]. Finally, we obtain the numerical value

C(∗) = 0.67± 0.05. (4.72)

Using now (4.57) and (4.66), we arrive at

xs = ys cos δs cos(φs + γ)

±

√√√√
[C(∗)

ε

][
BR(Bs → D

(∗)±
s K∓)

BR(Bs → D
(∗)±
s π∓)

]
− 1 + y2

s cos2 δs cos2(φs + γ), (4.73)

where xs was defined as a positive parameter [103]. For the numerical values of φs and γ
in (3.48) and (4.26), respectively, the CDF result in (4.54) gives xs = 0.46±0.27 (BR)±
0.11(C)±0.04(δs). This value for xs is consistent with theoretical expectations [103] and
the picture discussed in the next section. On the other hand, the central values of the
LHCb and Belle results in (4.54) do not give real solutions for xs. The requirement that
the argument of the square-root in (4.73) is positive can be converted into the following
lower bound:

BR(Bs → D
(∗)±
s K∓)

BR(Bs → D
(∗)±
s π∓)

≥ ε

C(∗)

[
1− y2

s cos2 δs cos2(φs + γ)

]
= 0.080± 0.007, (4.74)

which is shown in Figure 4.11. We observe that the LHCb result for the ratio of branch-
ing ratios would need to increase by about two standard deviations to satisfy this bound
and to give a real solution for xs.

In the next section, we shall use data from the B factories to obtain a sharper picture
of the hadronic parameters, including the CP-conserving strong phases δs.

4.3.2 Estimating the hadronic parameters

Using the U -spin flavour symmetry of strong interactions, the hadronic parameters xs
and δs of the Bs → D

(∗)±
s K∓ channels can be related to their counterparts xd and δd of

the Bd → D(∗)±π∓ decays as follows [103]:

xs = −xd
ε
, δs = δd. (4.75)
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indicated by the vertical band corresponds to (4.108) as given in Section 4.3.4.

These relations assume exact U -spin symmetry; the impact of possible corrections will
be addressed below.

The BaBar [115, 116] and Belle [117, 118] collaborations have performed mea-
surements which allow us to constrain the hadronic parameters |xd| and δs. For the
Bd → D±π∓ system the following constraints have been extracted from studies of CP-
violating effects [73]:

aDπ ≡ −2|xd| sin(φd + γ) cos(δd) = −0.03± 0.017, (4.76)

cDπlep ≡ −2|xd| cos(φd + γ) sin(δd) = −0.022± 0.021. (4.77)

A corresponding analysis of the Bd → D∗±π∓ decays (for which L = 1) yields [73]

aD
∗π ≡ 2|xVd | sin(φd + γ) cos(δVd ) = −0.039± 0.010, (4.78)

cD
∗π

lep ≡ 2|xVd | cos(φd + γ) sin(δVd ) = −0.010± 0.013, (4.79)

where we have used the label V to distinguish the vector D∗ system. In order to convert
these experimental results into |xd| and δd, we assume the value for γ in (4.26) with the
B0
d–B̄

0
d mixing phase taken to be φd = (42.8±1.6)◦ [73], which yields φd+γ = (111±7)◦.

Let us first extract |xd| by determining the doubly Cabibbo-suppressed branching
ratio BR(B̄0

d → D−π+) from BR(B̄0
d → D−s π

+) with the help of the SU(3) flavour
symmetry [119]. Using the notation of Ref. [113], we write

BR(B̄0
d → D−π+) =

( ε
C ′
)

BR(B̄0
d → D−s π

+), (4.80)

where

C ′ ≡ ΦDsπ

ΦDπ

N ′FN ′aN ′E. (4.81)
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In analogy to (4.68), the Φ are are phase-space factors, while

N ′F ≡
[
fDs
fD

F
B̄0
dπ

+

1 (m2
Ds

)

F
B̄0
dπ

+

1 (m2
D)

]2

(4.82)

and

N ′a ≡
∣∣∣∣
a1(D+

s π
−)

a1(D+π−)

∣∣∣∣
2

(4.83)

describe factorizable and non-factorizable SU(3)-breaking effects, respectively. The N ′E
factor takes into account that B̄0

d → D−π+ has a contribution from an exchange topol-
ogy, which does not have a counterpart in the B̄0

d → D−s π
+ channel:

N ′E ≡
∣∣∣∣

TD−π+

TD−π+ + ED−π+

∣∣∣∣
2

. (4.84)

We then obtain the following additional constraint for xd:

|xd| =
√( ε
C ′
)[BR(B̄0

d → D−s π
+)

BR(B̄0
d → D+π−)

]
. (4.85)

For the numerical analysis, we use the ratio of decay constants fDs/fD = 1.25 ±
0.06 [17] and the form-factor ratio F

B̄0
dπ

+

1 (m2
D)/F

B̄0
dπ

+

1 (m2
Ds

) = 0.9771 ± 0.0009, where
we have applied the evolution equation for the B̄0

d → π+ form factor given in Ref. [120].
For the decays entering (4.80), factorization is not expected to work well. Indeed,
following the approach discussed in Ref. [113], we extract |a1(D+

s π
−)| = 0.68 ± 0.12

from the experimental data, while factorization would correspond to a value around one.
Unfortunately, an analogous factorization test for B̄0

d → D−π+ cannot be performed4.
We allow for 20% SU(3)-breaking effects for the non-factorizable contributions, i.e. for
the deviation of |a1| from one, leading to N ′a = 1.0± 0.2.

In order to estimate the importance of the exchange contribution, we apply the
SU(3) flavour symmetry and use experimental information on BR(B̄0

d → D+
s K

−) =
(2.2 ± 0.5) × 10−5 [17], which receives only contributions from exchange topologies.
Comparing it to the contribution from tree topologies, which we fix again through
BR(B̄0

d → D−s π
+) = (2.16± 0.26)× 10−5 [121, 122], we obtain:

∣∣∣∣
ED−π+

TD−π+

∣∣∣∣ ∼
fπ
fK

∣∣∣∣
Vub
Vcb

∣∣∣∣

√
BR(B̄0

d → D+
s K

−)

BR(B̄0
d → D−s π

+)
∼ 0.1. (4.86)

Consequently, we estimate N ′E ∼ 1.0±0.2. In comparison with the value of NE ∼ 0.97±
0.08 given after (4.71), this range is larger. Although the exchange topologies entering

4The branching ratio quoted by the Particle Data Group [17] is constructed from (4.85), so using
this would create a circular argument.
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Figure 4.12: The confidence level contours for the χ2 fit of the hadronic parameters
|xd| and δd as discussed in the text, illustrating also the impact of the |xd| constraint in
(4.88).

both quantities are estimated to have similar absolute size, the analysis performed in
Ref. [113] indicates a large angle between the E and T amplitudes, which reduces the
impact of E on the amplitude ratio in NE.

Using finally also the experimental branching ratio [17]

BR(B̄0
d → D+π−) = (2.68± 0.13)× 10−3, (4.87)

the relation in (4.85) gives

|xd| = 0.0163± 0.0011|BR ±0.0026|SU(3) = 0.0163± 0.0028. (4.88)

This value is consistent with the results for xd given in Ref. [121, 122]. Combining
(4.88) with (4.76) and (4.77) allows, in principle, the determination of φd + γ and δd
up to discrete ambiguities. Unfortunately, a corresponding numerical fit leaves these
parameters still largely unconstrained.

We proceed to extract the parameters |xd|, δd and |xVd |, δVd from the constraints in
(4.76)–(4.79) using a χ2 fit. For the former parameter set we also include the constraint
in (4.88). The fit gives the following results:

|xd| = 0.0166+0.0025
−0.0029, δd =

(
−35+65

−35

)◦
, (4.89)

|xVd | = 0.025+0.014
−0.008, δVd =

(
146+48

−25

)◦
, (4.90)

where the errors give the 68% confidence level for each parameter. The χ2/ndof is 0.53
and 0.00 for the non-vector and vector decays, respectively. In Figure 4.12, we show the
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corresponding 39%, 68% and 95% confidence level regions in the δd–|xd| plane. Note
that the constraint in (4.88) considerably reduces the uncertainty of the |xd| parameter
for the non-vector decay.

Using (4.75), we hereby find

xs = 0.311+0.046
−0.053

∣∣
input
± 0.06

∣∣
SU(3)

, δs =
[
−35+69

−40

∣∣
input
± 20

∣∣
SU(3)

]◦
, (4.91)

xVs = 0.47+0.26
−0.15

∣∣
input
± 0.09

∣∣
SU(3)

, δVs =
[
146+48

−25

∣∣
input
± 20

∣∣
SU(3)

]◦
, (4.92)

where we allow for SU(3)-breaking effects of 20% for the x
(V )
s parameters and ±20◦ for

the strong phases. In later applications of these results, the uncertainties associated with
the x

(V )
d , δ

(V )
d parameters and the SU(3)-breaking effects will be combined in quadrature.

Before using the hadronic parameters given above to predict the observables of the
Bs → D

(∗)±
s K∓ decays in Section 4.3.4, which serve as input for an experimental study,

let us first discuss the extraction of φs + γ from these channels, with a special emphasis
on multiple discrete ambiguities and their resolution.

4.3.3 Extraction of φs + γ and discrete ambiguities

For the extraction of φs + γ from the Bs → D
(∗)±
s K∓ system, it is necessary to measure

the CP asymmetries described in Section 3.72:

ACP(Bs(t)→ D(∗)+
s K−) ≡ Γ(B0

s (t)→ D
(∗)+
s K−)− Γ(B̄0

s (t)→ D
(∗)+
s K−)

Γ(B0
s (t)→ D

(∗)+
s K−) + Γ(B̄0

s (t)→ D
(∗)+
s K−)

=
C cos(∆Ms t) + S sin(∆Ms t)

cosh(ys t/τBs) +A∆Γ sinh(ys t/τBs)
. (4.93)

An analogous expression holds for the CP-conjugate D
(∗)−
s K+ final states, where C, S

and A∆Γ are simply replaced by C, S and A∆Γ, respectively. The observables take the
following form [103]:

C = −
[

1− x2
s

1 + x2
s

]
, C = +

[
1− x2

s

1 + x2
s

]
(4.94)

S = (−1)L
2xs

1 + x2
s

sin(φs + γ + δs), S = (−1)L
2xs

1 + x2
s

sin(φs + γ − δs), (4.95)

which complement the expressions for A∆Γ and A∆Γ in (4.57).

The mixing time-dependent observables
(-)

C,
(-)

S and
(-)

A∆Γ are not independent of each
other, but rather satisfy the relations

C2 + S2 +A2
∆Γ = 1 = C

2
+ S

2
+A2

∆Γ (4.96)
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The extraction of the weak phase φs+γ is intuitively understood if we express the above
observables in terms of two polar vectors:5

A∆Γ + i S = −(−1)L
√

1− C2 e−i(φs+γ+δs), (4.97)

A∆Γ + i S = −(−1)L
√

1− C2
e−i(φs+γ−δs), (4.98)

where, because C = −C, both vectors have the same absolute value
√

1−
(-)

C
2

=
2xs

1 + x2
s

, (4.99)

and thus span the same circle on the complex plane. As illustrated in the left panel of
Fig. 4.13, the weak phase φs+γ then corresponds to the polar angle of a vector that lies
halfway between the two observable vectors, (4.97) and (4.98), with an equal angular
distance of δs to both.

From the relations (4.96) it follows that only two of the three observables for each

of the final states in the Bs → D
(∗)±
s K∓ system are needed to determine the magnitude

of the angle φs + γ. However, to also resolve the discrete ambiguities of this angle, the
optimal two sets are S, A∆Γ and S, A∆Γ. To see this, consider, as in the Bd → D(∗)±π∓

system, that we neglect the untagged observablesA∆Γ andA∆Γ. The direct CP violation
observable |C| = |C| then fixes the radius in the complex plane, and the mixing CP
observables S and S the component in the imaginary direction. As illustrated in the
right panel of Fig. 4.13, this results in an 8-fold discrete ambiguity for φs + γ. We will
refer to this as the “conventional” extraction method [102, 103]. On the contrary, as
shown in the left panel of Fig. 4.13, if the observables S and S are measured together
with the untagged observables A∆Γ and A∆Γ, the discrete ambiguity is reduced to a
two-fold one.

To extract the weak phase φs + γ we proceed to find the polar vectors offset by this
angle in the complex plane. We define, as in Ref. [103], the combination of observables

〈A∆Γ〉± ≡
A∆Γ ±A∆Γ

2
, 〈S〉± ≡

S ± S
2

. (4.100)

The average sum and difference of the two vectors, (4.97) and (4.98), are then:

〈A∆Γ〉+ + i 〈S〉+ =
[
(−1)L

√
1− C2 cos δs

]
ei[π−(φs+γ)], (4.101)

〈A∆Γ〉− + i 〈S〉− =
[
(−1)L

√
1− C2 sin δs

]
ei[π/2−(φs+γ)], (4.102)

which vanish in magnitude for the limits cos δs → 0 or sin δs → 0, respectively. It then
follows that the weak phase combination φs + γ is given by

tan(φs + γ) =
〈S〉+
−〈A∆Γ〉+

=
〈A∆Γ〉−
〈S〉−

. (4.103)

5Their relation to the complex observables ξ and ξ defined in Ref. [103] is given by 2 ξ/(1 + |ξ|2) =
A∆Γ + i S and 2 ξ/(1 + |ξ|2) = A∆Γ + i S, respectively.
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Figure 4.13: Illustration of the complex numbers (A∆Γ + iS) and (A∆Γ + i S) with
lengths

√
1− C2 in the complex plane. Left panel: illustration of the reduction of the

discrete ambiguity to a twofold one through the untagged observables A∆Γ and A∆Γ

(see (4.103)). Right panel: illustration of the conventional extraction of φs + γ and the
associated eightfold discrete ambiguity.

The two-fold ambiguity inherent in the tangent function is resolvable with the sign
information of the real and imaginary components. The real and imaginary components
themselves have a global sign ambiguity related to the sign of cos δ or sin δ. As discussed
in Ref. [103], this remaining ambiguity can be resolved from factorization arguments,
where we expect:

cos δs > 0, cos δVs < 0, (4.104)

This agrees well with the results of the U -spin analysis presented Section 4.3.2, where
the results for the strong phases in (4.91) and (4.92) give

cos δs = 0.82+0.18
−0.56, cos δVs = −0.83+0.43

−0.17. (4.105)

Thus, under reasonable assumptions, the extraction of φs + γ is unambiguous.

The advantage of the optimal set of observables S, S and A∆Γ, A∆Γ is not only that
they depend linearly on xs – in contrast to C, C – but that xs drops out in (4.103).
Interestingly, as we will see in the next section, both observable sets can be accessed with
similar precision at LHCb: the extraction of the untagged A∆Γ, A∆Γ observables relies
on the Bs decay width parameter ys, while the measurement of the S, S observables
requires the tagging of the flavour of the initially produced B0

s or B̄0
s mesons.

4.3.4 Experimental prospects

The hadronic parameters determined in Section 4.3.2, together with estimates for the
phases φs and γ given in (3.48) and (4.26), allow us to make predictions of the observables
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Table 4.1: Experimental uncertainties on the weak phase φs + γ, strong phase δs and
hadronic parameter xs for various data samples as determined from the toy Monte Carlo
simulation performed in Ref [86]. Results for the “conventional method”, which excludes
the untagged observables, are also shown. The errors correspond to the central values
φs + γ = 65.5◦, δs = −35◦ and xs = 0.31.

With A∆Γ and A∆Γ “Conventional Method”
Scenario φs + γ δs xs φs + γ δs xs
LHCb 2012 [±17]◦ [±17]◦ ±0.080 - - ±0.11
LHCb 2018 [±7.3]◦ [±7.3]◦ ±0.035 [+16

−26]◦ [+26
−16]◦ ±0.048

LHCb Upgrade [±3.0]◦ [±3.0]◦ ±0.015 [+8.8
−19 ]◦ [+19

−8.8]◦ ±0.021

of the Bs → D±s K
∓ decays:

τeff = 0.971+0.053
−0.012 τBs , A∆Γ = −0.49+0.58

−0.13, C = −0.824+0.086
−0.077, S = 0.29+0.30

−0.40,

τ̄eff = 1.025+0.030
−0.054 τBs , A∆Γ = 0.11+0.34

−0.59, C = 0.824+0.077
−0.086, S = 0.55+0.11

−0.28. (4.106)

And analogously for the Bs → D∗±s K∓ decays:

τVeff = 0.954+0.057
−0.021 τBs , AV∆Γ = −0.66+0.60

−0.21, CV = −0.64+0.36
−0.20, SV = 0.40+0.39

−0.44,

τ̄Veff = 1.027+0.034
−0.060 τBs , A

V

∆Γ = 0.13+0.40
−0.66, C

V
= 0.64+0.20

−0.36, S
V

= 0.76+0.19
−0.30. (4.107)

Furthermore, our predictions for the branching ratio observables (4.54) and (4.62) are

BR(Bs → D±s K
∓)

BR(Bs → D±s π
∓)

∣∣∣∣
SU(3)

= 0.0864+0.0087
−0.0072, (4.108)

BR(Bs → D+
s K

−)− BR(Bs → D−s K
+)

BR(Bs → D+
s K

−) + BR(Bs → D−s K
+)

∣∣∣∣
SU(3)

= −0.027+0.052
−0.019, (4.109)

respectively. The prediction in (4.108) is compared to the current experimental results
in Figure 4.11. Similarly, we predict for the vector decays:

BR(Bs → D∗±s K∓)

BR(Bs → D∗±s π∓)

∣∣∣∣
SU(3)

= 0.099+0.030
−0.036, (4.110)

BR(Bs → D∗+s K−)− BR(Bs → D∗−s K+)

BR(Bs → D∗+s K−) + BR(Bs → D∗−s K+)

∣∣∣∣
SU(3)

= −0.035+0.056
−0.024. (4.111)

The LHCb experiment has performed a first measurement of the CP observables for
the Bs → D±s K

∓ decays [107]. In our notation these results are given by:

A∆Γ = −1.33± 0.60± 0.26, C = −1.01± 0.50± 0.23, S = −1.25± 0.56± 0.24,

A∆Γ = −0.81± 0.56± 0.26, C = 1.01± 0.50± 0.23, S = −0.08± 0.68± 0.28.
(4.112)
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Figure 4.14: Illustration of the determination of φs + γ from the separate observable
combinations 〈A∆Γ〉+ and 〈S〉+ (left) and 〈A∆Γ〉− and 〈S〉− (right); see (4.101) and
(4.102). The errors bands correspond to the expected experimental sensitivity of LHCb
before by the end of the second run in 2018, which is based on the toy study performed
in Ref [86].

where C = −C has been assumed. We observe, however, that the errors are still too
large for a meaningful comparison to be made with the predictions given in (4.106).

To estimate the future experimental sensitivity for the above observables, toy Monte
Carlo simulations were performed in Ref. [86]. The data samples used in these simula-
tions were chosen to represent the number of events expected by the end of the 2012
LHC run, end of the second LHC run (estimated to be in 2018), and by the end of the
LHCb upgrade. Global fits for the parameters φs + γ, xs and δs resulting from these
simulations are summarised in Table 4.1. In particular, we have also compared the anal-
ysis involving the untagged observables with the “conventional method” as discussed in
Section 4.3.3. As expected, the inclusion of untagged information greatly improves our
sensitivity to our parameters of interest.

Aside from a global fit, it is also possible to use the observable pairs defined in (4.101)
and (4.102) separately to extract φs + γ. This method is illustrated in Figure 4.14.
Similarly, in the left panel of Figure 4.15, we illustrate the extraction of γ + φs from
〈S〉+ and 〈A∆Γ〉+ using the first relation in (4.103). And finally, in the right panel
of Figure 4.15 we illustrate the extraction of this angle from a combination of all the
observables, i.e. A∆Γ, S and C with their CP conjugates. In each of these figures we have
used the results from toy simulation discussed above with a data sample corresponding
to the end of the second LHC run.

The magnitude of A∆Γ + iS can be further constrained through the SU(3) flavour
symmetry, i.e. through (4.73) or by means of (4.75) with (4.85). However, we find that
this input, which would introduce the SU(3) flavour symmetry into a theoretically clean
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Figure 4.15: Illustration of the determination of φs+γ from two different methods. Left
panel: using 〈A∆Γ〉+ and 〈S〉+ by means of (4.103). We also show the eightfold solution
resulting from the “conventional” method as discussed in the text. Right panel: from a
simultaneous fit to A∆Γ, S, C and their CP conjugates in the complex plane (see also
Figure 4.13). The errors bands correspond to the expected experimental sensitivity of
LHCb before by the end of the second run in 2018, which is based on the toy study
performed in Ref [86].

strategy, does not significantly improve the precision for γ + φs. If also decays of the
type Bs → D∗±s K∓ can be reconstructed, the precision could be further enhanced in a
theoretically clean way. However, these channels require the reconstruction of a radiative
photon in the decay D∗±s → D±s γ and as such are experimentally more challenging.

4.4 Conclusions

In this chapter we have considered strategies to determine the CKM angles γ and φs us-
ing the QCD penguin dominated transition Bs → K+K− and the tree-level transitions
Bs → D

(∗)
s K. For both decay modes the optimal strategies for determining γ are still

awaiting precise experimental data. Nonetheless, we have performed interesting first
analyses for both modes and given Standard Model predictions using existing experi-
mental measurements together with SU(3) flavour symmetry assumptions. It will be
very interesting to eventually compare the value of γ extracted from pure tree topologies,
specifically the theoretically clean time-dependent Bs → D

(∗)
s K analysis discussed here,

with the extraction involving penguin topologies, namely the Bs → K+K− strategy, as
the latter are potentially sensitive to New Physics effects.

Regarding the U -spin-related B0
s → K+K−, B0

d → π+π− pair of decays, we have
performed a first determination of the angle γ using alternative inputs from those of
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the optimal strategy. We obtained the value γ = (67.7+4.5
−5.0|input

+5.0
−3.7|ξ+0.1

−0.2|∆θ)◦, which is
very competitive with other determinations of this angle. Furthermore, it agrees very
well with fits of the unitarity triangle. As a result we conclude that large New Physics
effects in the decay amplitudes of these decays must be absent.

Assuming no New Physics in the decay amplitudes, which lets us fix the value of
γ, we proceeded to analyse the potential of extracting the Bs mixing parameters from
the time-dependent observables of Bs → K+K−. A particularly interesting observable
to this end is the mass-eigenstate rate asymmetry AK+K−

∆Γ , which can be probed by
an effective lifetime fit to the untagged time-dependent sample. Also interesting is
the mixing-induced CP asymmetry available from a tagged analysis. The Standard
Model predictions of both observables are robust under the current errors of the input
quantities as well as with respect to U -spin-breaking estimates. We further found both
observables to be sensitive to New Physics effects in Bs mixing, and thereby complement
the standard B0

s → J/ψφ analysis for determining these parameters, as well as the
general B0

s → J/ψss̄ modes to be discussed in Chapter 5.

Finally, we illustrated the optimal strategy for extracting γ using the B0
s → K+K−

decay. This strategy is still awaiting more accurate experimental results from the LHCb
experiment. Once available, it will not only allow a theoretically cleaner determination of
γ but will also allow an internal consistency check of the U -spin symmetry assumption.
Using existing data, the current picture points towards a favourable situation with
respect to possible U -spin-breaking effects.

Also for the decays Bs → D
(∗)±
s K∓ we have performed a detailed analysis of their

observables. We addressed in particular their dependence on the Bs decay width dif-
ference ys, which affects the utility of their branching ratio measurements in a subtle
way. We derived a lower bound for the ratio of the experimental Bs → D±s K

∓ and
Bs → D±s π

∓ branching ratios given in (4.54), and observed that the central value for
the LHCb result is too small by about two standard deviations.

The width difference ys offers the untagged observables A∆Γ and A∆Γ for the final
states D

(∗)+
s K− and D

(∗)−
s K+, respectively, which can nicely be combined with the

corresponding mixing-induced CP asymmetries S and S to determine φs + γ in an
unambiguous way. We have illustrated this strategy and also given predictions for the
Bs → D

(∗)±
s K∓ observables from an SU(3) analysis of the B-factory data for Bd →

D(∗)±π∓, Bd → D±s π
∓ decays. Using data available from a toy experimental simulation

we have illustrated that the interplay between the untagged observables A∆Γ, A∆Γ and
the tagged CP asymmetries S, S is actually the key feature for being able to measure
φs + γ through the Bs → D

(∗)±
s K∓ decays at LHCb.



Chapter 5

An exploration of Bs→ J/ψss̄

5.1 Introduction

Measurements of the B0
s–B̄

0
s mixing phase φs appear to be converging towards the SM

prediction, suggesting that contributions from New Physics, if present, are small. The
analysis driving this convergence is that of the decay mode Bs → J/ψφ, for which the
determination of φs by the LHCb experiment was given in (3.48). The presence of the φ
vector meson in the final state helps the prominence of this decay in two ways. Firstly,
the φ decays favourably to two charged kaons, which gives a clear signal at hadron
collider experiments. And, secondly, the φ is believed to be almost completely an ss̄
state. Thus the decay mode Bs → J/ψφ is driven by the tree-level b → scc̄ transition,
which does not receive a large CKM suppression and also carries no CP violating phases
(in our convention). The only obvious price we must pay for picking two vector mesons
in the final state is that a time-dependent angular analysis is required to disentangle
the various CP-even and CP-odd polarization states [123, 79].

As precision improves, however, corrections from additional decay mode topologies
will also need to be accounted for. Specifically, doubly Cabibbo suppressed penguin
topologies contributing with CP violating phases can shift the value of φs that is ex-
tracted. In the formalism introduced in Section 3.2.2, this amounts to measuring a
separate angle φs + ∆φλJ/ψφ for each of the basis components λ constituting the angular

analysis of the Bs → J/ψφ decay mode (see Section 3.4 for a brief discussion of this
basis). In order to estimate these ∆φλJ/ψφ phase shifts, which are subject to theoretical
hadronic uncertainties, it is possible to use information from decay modes whose topolo-
gies are related by SU(3)F flavour symmetry but where the penguin topologies are not

doubly Cabibbo suppressed. Two examples of such control channels are Bs → J/ψK
0∗

and Bd → J/ψρ0 [81].

Estimating the phase shifts ∆φλJ/ψφ is not the topic of this chapter, however. Instead,
we seek to reduce the uncertainty of φs by overconstraining it using different independent
analyses, each with their own strategies for controlling the hadronic uncertainties. In

85
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particular we will focus on decay modes of the form Bs → J/ψss̄ with the ss̄ bound state
taken to form a spin-0 meson. In this case the experimental measurement is simplified by
not requiring an angular analysis. In Section 5.2 we will consider the scalar meson state
f0(980) as the ss̄ candidate, giving the final state B0

s → J/ψf0(980). Note that from
here on we will abbreviate this mode as B0

s → J/ψf0 throughout the rest of this chapter.
In Section 5.3 we similarly consider the pseudoscalar states η and η′, giving the final
states B0

s → J/ψη(′). The challenging feature of both these choices is that the amount
of ss̄ present in these mesons relative to other isospin singlet states is not yet settled.
Furthermore, the nature of the f0(980), namely whether it is a conventional quark-
antiquark state, tetraquark or something more exotic, is still under dispute. In both
analyses we will therefore attempt to include these uncertainties into the expressions for
the relevant observables and their SM predictions.

We may also consider completely different analysis strategies. In Chapter 4 for ex-
ample we discussed how the U -spin related pair of decays Bs → K+K− and Bd → π+π−

may be used to measure φs provided the angle γ is fixed by a different means. In that
chapter we also converted the effective lifetime measurement of the mode Bs → K+K−,
which has a CP-even final state, into a contour in the φs–∆Γs plane. In Section 5.2 we
will do the same for the B0

s → J/ψf0 effective lifetime measurement. With this pair
of CP-odd and CP-even Bs final states it is thus possible to carry out the strategy for
determining the Bs mixing parameters outlined in Section (3.3.2). We will do precisely
this in Section 5.4 of this chapter. Finally in Section 5.5 we summarise our results.

5.2 The f0(980) as an ss̄ state

As mentioned in the introduction, the advantage of choosing the f0(980) for the ss̄ bound
state in Bs → J/ψss̄ is that it is not a vector meson [124]. Specifically, it is a scalar state
with quantum numbers JPC = 0++ [17]. Therefore the final state of B0

s → J/ψf0 is a P-
wave state, with the CP eigenvalue −1, and thus an angular analysis is not needed [124].
Unfortunately, besides from being a scalar state, few other properties of the f0(980) are
known with certainty. Furthermore, as we will discuss in this section, its nature as a
conventional quark-antiquark meson, tetraquark or a more exotic combination is still
under dispute. This section as a whole is based on the work of Ref. [125].

In Table 5.1, we list the branching ratio measurements of B0
s → J/ψf0 with f0 →

π+π−, the dominant decay mode of the f0(980)1. We observe that the number of events
for B0

s → J/ψf0 with f0 → π+π− is about four times smaller than for B0
s → J/ψφ

with φ → K+K−. Fewer events is a trade-off we must accept for avoiding the angular
analysis of the B0

s → J/ψφ analysis. Nevertheless, the LHCb experiment has recently
measured an effective lifetime and performed an early analysis of CP violation for the
B0
s → J/ψf0 decay mode, which we will present and discuss in this section.

1The LHCb, DØ and CDF experiment do not report the branching ratio directly, but instead its
fraction, Rf0/φ, with respect to the branching ratio for B0

s → J/ψφ with φ→ K+K−.
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Experiment Rf0/φ BR(Bs → J/ψf0; f0 → π+π−) [10−4]

LHCb [126] 0.284+0.053
−0.028

? 1.39+0.47
−0.35

?

Belle [127] 1.16+0.31
−0.19

+0.30
−0.25

DØ [128] 0.275± 0.041± 0.061 1.83± 0.83?

CDF [129] 0.257± 0.020± 0.014 1.71± 0.65?

Table 5.1: Compilation of branching ratio measurements involving B0
s → J/ψf0. Here

Rf0/φ ≡ BR(Bs → J/ψf0; f0 → π+π−)/BR(Bs → J/ψφ;φ → K+K−), and a ? indi-
cates that this result was calculated by us, for comparison, using the additional inputs
BR(Bs → J/ψφ) = (1.00+0.28

−0.23)× 10−3 and BR(φ→ K+K−) = (48.9± 0.5)× 10−2 [17].
The reported errors are either the statistical and systematic uncertainties, respectively,
or everything combined in quadrature.

In view of these promising developments, we briefly summarize the current knowledge
about the f0(980) in Section 5.2.1, and have a closer look at the B0

s → J/ψf0 ampli-
tude structure in Section 5.2.2. In Section 5.2.3, we discuss the effective B0

s → J/ψf0

lifetime τJ/ψf0 , which can be determined from untagged Bs data samples and show the
dependence on the CP-violating B0

s–B̄
0
s mixing phase φs. The mixing phase also plays

a key role for the time-dependent CP asymmetry of B0
s → J/ψf0, which we address in

Section 5.2.4. The theoretical predictions given in Sections 5.2.3 and 5.2.4 are limited
by doubly Cabibbo-suppressed hadronic contributions. In Section 5.2.5, we point out
that these effects can be constrained by an analysis of the B0

d → J/ψf0(980) channel,
which has not yet been observed.

5.2.1 The hadronic structure of the f0(980)

5.2.1.1 Preliminaries

Contrary to the recent discovery of a possible elementary scalar particle, a variety of
scalar hadronic bound states have long been observed. These states are often categorized
according to whether their mass falls above or below 1 GeV. Those belonging to the
former category are expected to be composed predominantly of quark–antiquark states
and among them a SU(3)F flavour nonet can be identified. Unfortunately, the f0(980)
belongs to the latter category, where, as we will see, the interpretation is far from being
straightforward. The f0(980) is an isospin singlet with a mass of (990± 20) MeV, just
below the KK̄ threshold, and a full width between 40 MeV and 100 MeV, which reflects
the fact that the width determination is very model-dependent [17].

In the literature, the hadronic structure of the f0(980) state has been discussed
for decades and there are many different interpretations, from the conventional quark–
antiquark picture [130] to multiquark [131, 132] or KK̄ bound states [133] (for a review,
see, for instance, Ref. [17] and references within). As the goal is to use the B0

s →
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J/ψf0 decay for precision tests of the CP-violating sector of the SM, it is a natural
and important question to explore how the hadronic structure of the f0(980) affects the
corresponding observables. In this section, we have a closer look at popular descriptions
of the f0(980), setting the stage for the discussion of the B0

s → J/ψf0 observables. We
will focus on two specific frameworks: the quark–antiquark and tetraquark pictures.

5.2.1.2 The f0(980) as a quark–antiquark state

In the conventional quark model, the scalar hadronic states are interpreted as mesons,
i.e. quark–antiquark (qq̄) bound states, with an orbital angular momentum of L = 1 and
a spin of S = 1 coupled to give a total angular momentum of J = 0. In analogy to the
pseudo-scalar mesons, it is suggestive to group the observed scalar states into nonets of
the SU(3)F flavour symmetry of strong interactions.

For the scalar states with masses . 1 GeV, we can identify an isotriplet a0(980),
two strange isodoublets, κ or K?

0(800), and two isosinglets σ(600) and f0(980). In the
näıve quark model, assuming ideal mixing between the heaviest and lightest members of
the SU(3)F nonet, the f0(980) and σ(600), respectively, their quark-flavour composition
would simply be given by

|f0(980)〉 = |ss̄〉, |σ(600)〉 =
1√
2

(
|uū〉+ |dd̄〉

)
. (5.1)

However, there is also experimental evidence for a non-strange component of the f0(980),
which could be interpreted as evidence for the following mixing structure:

(
|f0(980)〉
|σ(600)〉

)
=

(
cosϕM sinϕM

− sinϕM cosϕM

)
·
( |ss̄〉

1√
2

(
|uū〉+ |dd̄〉

)
)
. (5.2)

Here the mixing angle ϕM is the counterpart of the η–η′ mixing angle in the standard
pseudo-scalar nonet, which will be discussed in Section 5.3.

The determination of ϕM is affected by large errors and appears process and model
dependent. For instance:

• Using D+
s → π+π+π− transitions caused dominantly by D+

s → π+s̄s processes,
the range 35◦ ≤ |ϕM| ≤ 55◦ was estimated in Ref. [134].

• By making a simultaneous calculation of radiative decays of the kind f0(980)→ γγ
and φ(1020) → γf0(980), ϕM = (4 ± 3)◦ or ϕM = (138 ± 6)◦ were obtained in
Ref. [135].

• In Ref. [136], it was found that a value of ϕM ' 20◦ is consistent with the resonance
data from φ(1020)→ γπ0π0 and J/ψ → ωππ decays.

• Using two different methods to fit the D(s) → f0(980){π,K} branching ratios,
covariant light-front dynamics and dispersion relations, ϕM = (31.5 ± 5.0)◦ and
ϕM = (41.6± 7.1)◦ were obtained in Ref. [137].
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Despite this unsatisfactory picture for the mixing angle, these studies indicate that
the f0(980) has a significant ss̄ component. This feature is also supported by the recent
observation of the B0

s → J/ψf0 channel, with measurements as summarized in Table 5.1.

Due to their non-zero orbital angular momentum, the scalar mesons are expected to
be heavier than the pseudo-scalar and vector mesons in the näıve quark picture. This is
not, however, the case for the light scalars that have masses below 1 GeV. Furthermore,
the light scalar mass spectrum bears little resemblance with that of a standard nonet.
An attractive framework to overcome these phenomenological problems is offered by the
tetraquark model.

5.2.1.3 The f0(980) as a tetraquark

In the tetraquark picture, scalar states with quantum numbers JPC = 0++ are formed
by the binding of diquark and anti-diquark configurations. A diquark, denoted by [qq′],
transforms as 3̄ under SU(3)C colour symmetry, has spin S = 0, and transforms as 3̄
under SU(3)F flavour symmetry. Anti-diquarks, denoted by [q̄q̄′], are in the correspond-
ing conjugate representations. The bound scalar states of diquarks and anti-diquarks,
which do not require a non-vanishing angular momentum L in contrast to the qq̄ in-
terpretation, can reproduce the SU(3)F nonet structure and mass ordering in a natural
way [131, 132]. The physical f0(980) and σ(600) states are given in terms of the ideally
mixed states

|f [0]
0 (980)〉 ≡ [su][s̄ū] + [sd][s̄d̄]√

2
, |σ[0](600)〉 ≡ [ud][ūd̄] (5.3)

as (
|f0(980)〉
|σ(600)〉

)
=

(
cosω − sinω
sinω cosω

)
·
(
|f [0]

0 (980)〉
|σ[0](600)〉

)
. (5.4)

An analysis of the measured scalar masses points to a small deviation from ideal mixing,
with an upper bound of |ω| < 5◦ [132, 138, 139], which we shall neglect in the following
discussion.

In Ref. [132], it was pointed out that a coherent picture of the scalar mesons can
be obtained through mixing between tetraquark and qq̄ states due to instanton effects.
Here the light scalar mesons . 1 GeV are predominantly tetraquark states while their
heavier counterparts, with masses & 1 GeV, are predominantly qq̄ states. A fit of this
model to data adequately describes the mass spectrum.

5.2.1.4 Further probes of the f0(980)

In lattice QCD there is an ongoing effort to calculate the spectrum of the low-lying
scalars and to study observables that will allow us to distinguish between exotic and
conventional states (see for example Ref. [140]). From a phenomenological perspective,
several processes are under scrutiny to probe the structure of the f0(980). Particularly
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Figure 5.1: Decay topologies contributing to the B0
s → J/ψf0 channel as discussed in

the text. The penguin topologies implicitly include QCD and electroweak penguins.
The dashed lines denote a colour-singlet exchange, which can in general connect to the
quark lines of the main B0

s decay diagram in a number of ways.

interesting are radiative φ→ f0γ decays, which were proposed to distinguish between the
standard qq̄ and tetraquark interpretation. One evident difference is that the radiative
transition of the φ ∼ ss̄ to a non-strange qq̄ state would require the annihilation and
creation of an additional quark–antiquark pair in the qq̄ picture, which is suppressed by
the Okubo–Zweig–Iizuka (OZI) rule. On the other hand, the transition to a qqq̄q̄ state
containing a ss̄ pair requires only the creation of an additional qq̄ pair, which is not OZI-
suppressed. Also here the data seem to favour a tetraquark picture, although alternative
interpretations involving model-dependent assumptions are possible as well [141, 136].

The f0(980) has also been observed in hadronic decays of Z0 bosons, where its
production properties are found to be similar to those of a φ meson. This supports the
qq̄ picture although there are currently no predictions for the production rates of the
tetraquark or the even more exotic KK̄ molecule picture available [142].

Over the last decade, a large amount of data for decays of heavy mesons has be-
come available, paving the way for new studies to reveal the hadronic structure of the
f0(980). Decays of Ds mesons have received a lot of attention, and also charmless
hadronic B decays offer a nice laboratory to shed further light on the nature of the
scalar mesons [143, 144].

A more comprehensive overview of the hadronic structure of the f0(980) is beyond
the scope of this section. In the following discussion of the B0

s → J/ψf0 decay, we
shall consider the quark–antiquark and tetraquark pictures of the f0(980) as theoretical
benchmarks.
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5.2.2 Amplitude structure

5.2.2.1 Decay topologies

In Figure 5.1, we show the decay topologies contributing to B0
s → J/ψf0 in the SM.

The structure of the corresponding decay amplitude is given as follows:

A(B0
s → J/ψf0) = λ(s)

c

[
A

(c)
T + A

(c)
P + A

(c)
E + A

(c)
PA

]
+ λ(s)

u

[
A

(u)
P + A

(u)
E + A

(u)
PA

]

+ λ
(s)
t

[
A

(t)
P + A

(t)
PA

]
, (5.5)

where λ
(s)
q ≡ VqsV

∗
qb are CKM factors and A

(q)
topology generically denotes the corresponding

CP-conserving strong amplitudes. Specifically, A
(c)
T is the colour-suppressed tree contri-

bution, A
(q)
P are the penguin and penguin exchange topologies with a q-quark running

in the loop, A
(c)
E and A

(u)
E describe exchange topologies with cc̄ and uū pairs created by

the W exchange, respectively, while the A
(q)
PA denote the penguin annihilation topologies

with internal q-quarks.

The penguin topologies implicitly include QCD and electroweak penguins. In anal-
ogy toB0

d → J/ψKS orB0
s → J/ψφ, the QCD penguin topologies require a colour-singlet

exchange and are OZI-suppressed. However, this comment does not apply to the elec-
troweak penguin diagrams, which can contribute in colour-allowed form and are hence
expected to have a significant impact on the B0

s → J/ψf0 penguin sector [145]. It is not
evident that the OZI suppression is effective for the QCD penguin topologies and that
it cannot be reduced by long-distance effects. Let us also note that data on non-leptonic
B-meson decays of the kind B → ππ and B → Dπ indicate that colour suppression is
not effective in nature [146, 113].

Using the unitarity of the CKM matrix to eliminate the λ
(s)
t factor, we obtain

A(B0
s → J/ψf0) =

(
1− λ2

2

)
A
[
1 + εbeiϑeiγ

]
, (5.6)

where we have introduced the CP-conserving “hadronic” parameters

A ≡ λ2A
[
A

(c)
T + A

(ct)
P + A

(c)
E + A

(ct)
PA

]
(5.7)

and

beiϑ ≡ Rb

[
A

(ut)
P + A

(u)
E + A

(ut)
PA

A
(c)
T + A

(ct)
P + A

(c)
E + A

(ct)
PA

]
, (5.8)

using the shorthand notation

A
(qt)
topology ≡ A

(q)
topology − A

(t)
topology, (5.9)

with q ∈ {u, c}. These CP-conserving amplitudes can be expressed in terms of hadronic
matrix elements of four-quark operators appearing in the relevant low-energy effective
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[su][ūs̄]√

2
, [sd][d̄s̄]√

2




A
(c)
E

A
(c)
T

A
(c)
E

A
(q)
P

A
(q)
PA

u, d

s

s



[su][ūs̄]√
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Figure 5.2: Illustration of how the topologies shown in Figure 5.1 are extended in the
case where the f0(980) is a tetraquark. Also shown is the additional topology A4q.

Hamiltonian (see Section 2.2). In the above expression we have used the definition
ε ≡ λ2/(1− λ2). The parameters λ and A are part of the Wolfenstein parameterization
defined in (2.14). The phase γ is the usual angle of the unitarity triangle defined in
(2.19), and Rb is one side of the sides of this triangle as given in (2.18).

The form of the B0
s → J/ψf0 amplitude is similar to that of B0

d → J/ψK0 [147, 100,
148, 149, 78] and B0

s → J/ψφ [81]. In analogy to these channels, the hadronic parameters
b and ϑ cannot be calculated reliably and suffer from large theoretical uncertainties. In
the case of the B0

s → J/ψf0 channel the situation is even worse because the details of
the hadronic composition of the f0(980) affects the value of beiϑ. However, the crucial
feature is that this parameter enters the decay amplitude with the tiny ε factor, i.e. it
is doubly Cabibbo-suppressed.

5.2.2.2 Specific assumptions about the f0(980)

In order to obtain insights into the parameter beiϑ, we have to make assumptions about
the hadronic composition of the f0(980). In the case where the f0(980) adheres to the
qq̄ model as described by (5.2), we may split the strong amplitudes into separate terms,
projecting out on the different quark flavours. This gives

A
(c)
T = cosϕMÃ

(c)
T,ss̄, A

(qt)
P = cosϕMÃ

(qt)
P,ss̄,

A
(c)
E = cosϕMÃ

(c)
E,ss̄ +

1√
2

sinϕM

[
Ã

(c)
E,uū + Ã

(c)

E,dd̄

]
, A

(u)
E =

1√
2

sinϕMÃ
(u)
E,uū,

A
(qt)
PA = cosϕMÃ

(qt)
PA,ss̄ +

1√
2

sinϕM

[
Ã

(qt)
PA,uū + Ã

(qt)

PA,dd̄

]
, (5.10)
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where Ã
(q′)
topology,qq̄ denotes a CP-conserving strong amplitude contributing to the qq̄

flavour component of the f0(980). This decomposition is analogous to SU(3)F anal-
yses of non-leptonic B decays involving η or η′ mesons, where we have to deal with η–η′

mixing [150, 151, 152]. By assuming SU(3)F flavour symmetry for the strong dynamics
producing the f0(980), we can, for convenience, drop the qq̄ subscripts without further
loss of generality. The hadronic parameter defined in (5.8) then takes the following form:

beiϑ
∣∣
qq̄

= Rb




cosϕM

{
Ã

(ut)
P + Ã

(ut)
PA

}
+ 1√

2
sinϕM

{
Ã

(u)
E + 2Ã

(ut)
PA

}

cosϕM

{
Ã

(c)
T + Ã

(ct)
P + Ã

(c)
E + Ã

(ct)
PA

}
+ 1√

2
sinϕM

{
2Ã

(c)
E + 2Ã

(ct)
PA

}


 .

(5.11)

If, instead, the f0(980) is a tetraquark, the uū, dd̄ and ss̄ final states of the topologies
in Figure 5.1 are modified by the creation of an extra quark–antiquark pair as shown
in Figure 5.2. Moreover, there is an additional topology A4q, which is specific to the
tetraquark description of the f0(980). Another example of a weak B-meson decay with
an additional topology in the tetraquark interpretation of the light scalars that is not
present in the qq̄ picture is the B0

d → κ+K− channel, as was pointed out in Ref. [144].

In order to simplify the discussion, we assume ω = 0 in (5.4). The strong amplitudes
can then be written as follows:

A
(c)
T =

1√
2

(
Ã

(c)
T,suūs̄ + Ã

(c)

T,sdd̄s̄

)
isospin

=
√

2Ã
(c)
T ,

A
(qt)
P =

1√
2

(
Ã

(qt)
P,suūs̄ + Ã

(qt)

P,sdd̄s̄

)
isospin

=
√

2Ã
(qt)
P ,

A
(c)
E =

1√
2

(
Ã

(c)
E,suūs̄ + Ã

(c)

E,sdd̄s̄
+ Ã

(c)
E,uss̄ū + Ã

(c)

E,dss̄d̄

)
SU(3)F

= 2
√

2Ã
(c)
E ,

A
(u)
E =

1√
2
Ã

(u)
E,uss̄ū =

1√
2
Ã

(u)
E ,

A
(qt)
PA =

1√
2

(
Ã

(c)
PA,suūs̄ + Ã

(c)

PA,sdd̄s̄
+ Ã

(c)
PA,uss̄ū + Ã

(c)

PA,dss̄d̄

)
SU(3)F

= 2
√

2Ã
(qt)
PA , (5.12)

where Ã
(q′)
topology,qq′q̄′q̄ denotes a strong amplitude of which the f0(980) tetraquark was

formed by a qq̄ final state (from the corresponding topology in Figure 5.1) combining
with a q′q̄′ pair. In the last equalities of the expressions in (5.12) we have assumed –
as indicated – isospin or SU(3)F symmetry in order to simplify them. The additional
topology A4q in Figure 5.2 can be written correspondingly as

A4q =
1√
2
Ã4q,usūs̄ =

1√
2
Ã4q, (5.13)

and contributes with the CKM factor λ
(s)
u . We finally arrive at the following expression

for the hadronic parameter defined in (5.8):

beiϑ
∣∣
4q

= Rb

[
Ã

(ut)
P + 1

2
Ã

(u)
E + 2Ã

(ut)
PA + 1

2
Ã4q

Ã
(c)
T + Ã

(ct)
P + 2Ã

(c)
E + 2Ã

(ct)
PA

]
. (5.14)
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It is interesting to observe that in the absence of the A4q contribution beiϑ
∣∣
qq̄

takes the

same form as beiϑ
∣∣
4q

for

cosϕM =

√
2

3
, sinϕM =

√
1

3
, (5.15)

i.e. for a mixing angle of ϕM = 35◦, which corresponds to

|f0(980)〉 =
1√
6

[
|uū〉+ |dd̄〉+ 2|ss̄〉

]
, (5.16)

with a flavour structure similar to that of the η′ meson (see Section 5.3 and Refs [153,
150]). The individual topological amplitudes would, however, still take different values
in the quark–antiquark and tetraquark descriptions of the f0(980). Unfortunately, we
cannot easily calculate these amplitudes as they are non-perturbative quantities.

For the discussion of the B0
s → J/ψf0 observables in Sections 5.2.3 and 5.2.4, we

will consider the following range for the relevant hadronic parameters:

0 ≤ b ≤ 0.5, 0◦ ≤ ϑ ≤ 360◦. (5.17)

Because of Rb ∼ 0.5, the value of b ∼ 0.5 would correspond to strong amplitudes in
the numerator and denominator of (5.8) of the same order of magnitude. In view of
the still unsettled hadronic structure of the f0(980) and the complex – and essentially
unknown – hadronization dynamics of the B0

s → J/ψf0 channel we cannot exclude such
a scenario. For example, using experimental data on B0

d → J/ψπ0 and the SU(3)F

flavour symmetry, the counterparts of b and ϑ in B0
d → J/ψK0 are found at the 1σ

level to be in the ranges [0.15, 0.67] and [174, 212]◦, respectively [78]. We shall return to
the hierarchy of the different decay topologies in Section 5.2.5.4.

The expressions for beiϑ in the qq̄ and tetraquark pictures will be useful when dis-
cussing the B0

d → J/ψf0(980) channel in Section 5.2.5.

5.2.2.3 Estimate of the branching ratio in factorization

It is instructive to estimate the branching ratio of B0
s → J/ψf0 from the measured

B0
d → J/ψK0 branching ratio. To this end, we assume that the f0(980) is a quark–

antiquark state satisfying (5.2). In the factorization approximation (see Section 2.3),
the hadronic matrix element takes the following form [154, 155]:

〈f0(p′)|s̄γµγ5b|B0
s (p)〉 = cosϕMF

B0
sf0

1,ss̄ (q2)

[
(p+ p′)µ −

(
M2

B0
s
−M2

f0

q2

)
qµ

]

+ cosϕMF
B0
sf0

0,ss̄ (q2)

(
M2

B0
s
−M2

f0

q2

)
qµ, (5.18)
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where q ≡ p−p′ is the transfered momentum and M denotes a particles mass. Here the

F
B0
sf0

k,ss̄ , with k ∈ {1, 2}, are form factors that describe the transition of the B0
s meson

to the ss̄ component of the f0(980). Since the f0(980) is a scalar particle, Lorentz
invariance implies that only the axial-vector part of the V − A current contributes to
the matrix element with the pseudo-scalar B0

s meson.

If we use the factorization approximation and take only the colour-suppressed tree-
diagram-like topology A

(c)
T into account, we obtain

BR(Bs → J/ψf0)

BR(Bd → J/ψK0)

∣∣∣∣
fact.

=
τB0

s

τB0
d

(
MB0

s
Φs

MB0
d
Φd

)3

 F

B0
sf0

1,ss̄ (M2
J/ψ)

F
B0
dK

0

1 (M2
J/ψ)




2

cos2 ϕM, (5.19)

where

Φs ≡ Φ(MJ/ψ/MB0
s
,Mf0/MB0

s
), Φd ≡ Φ(MJ/ψ/MB0

d
,MK0/MB0

d
) (5.20)

with

Φ(x, y) ≡
√[

1− (x+ y)2] [1− (x− y)2] (5.21)

are phase-space factors. The Bs branching ratio defined here corresponds to the theo-
retical definition of a branching ratio given in (3.105).

To calculate the B0
d → K0 form factor we use the leading-order light-cone QCD

sum-rule analysis of Ref. [156] and extrapolate to the scale of interest, M2
J/ψ, by using

the analytic evolution equations in q2 provided. The resulting value is very similar to
the one that can be inferred from the plots of Ref. [93]; we obtain

F
B0
dK

0

1 (M2
J/ψ) = 0.615± 0.076. (5.22)

The B0
s → f0(980) form factor of the axial-vector current is more problematic due to

the uncertain mixing angle ϕM. The authors of Ref. [154, 155] perform a leading order
light-cone QCD sum-rule calculation with the assumption that the f0(980) is entirely
an ss̄ state, i.e. that ϕM = 0◦. Using the evolution equation in q2 that they provide, we
obtain [

cosϕMF
B0
sf0

1,ss̄ (M2
J/ψ)

]
ϕM=0◦

= 0.32+0.06
−0.05. (5.23)

On the other hand, the authors of Ref. [137] determine the mixing angle ϕM by
performing a fit of the D(s) → f0(980){π,K} branching ratios with the help of two
approaches: covariant light-front dynamics and dispersion relations. The latter method
gives a fitted mixing angle of ϕM = 41.6◦ and is better behaved for the large momentum
transfer M2

J/ψ; we read off from their plot:

[
cosϕMF

B0
sf0

1,ss̄ (M2
J/ψ)

]
ϕM=41.6◦

' 0.5. (5.24)

Due to the wide variance in results for the different methods and mixing angles, we will
not include error estimates for the corresponding branching ratio calculation.
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By combining the form factors in (5.22), (5.23) and (5.24) with the measured value
BR(Bd → J/ψK0) = (8.71±0.32)×10−4, as well as the lifetimes and mass values listed
in Ref. [17], we find

BR(Bs → J/ψf0)|ϕM=0◦ ' 1.9× 10−4 (5.25)

and

BR(Bs → J/ψf0)|ϕM=41.6◦ ' 4.8× 10−4, (5.26)

for the branching ratios (using the theoretical definition). Let us emphasize that these
estimates assume that the f0(980) is described in the qq̄ picture by (5.2), include only
tree topologies, and take only factorizable SU(3)-breaking effects through the form-
factor calculations listed above into account.

5.2.2.4 Estimate of the branching ratio from experiment

We proceed to compare the results obtained in the previous subsection with the data
listed in Table 5.1. Combining errors in quadrature and taking a weighted average gives

BR(Bs → J/ψf0; f0 → π+π−)
∣∣
avg

=
(
1.27+0.22

−0.17

)
× 10−4. (5.27)

The missing ingredient is BR(f0 → π+π−), which has not been adequately measured.
However, measurements do exist for the ratios

R ≡ Γ(f0 → ππ)

Γ(f0 → ππ) + Γ(f0 → KK)
and R′ ≡ Γ(f0 → K+K−)

Γ(f0 → π+π−)
. (5.28)

Under the assumption that all other decay channels (such as γγ) are neglegible and that
the ππ and KK channels adhere to isospin symmetry, we expect

BR(f0 → π+π−) =
2R

3
=

2

4R′ + 3
(5.29)

as well as

BR(f0 → K+K−) =
1

2
(1−R) =

2R′

4R′ + 3
, (5.30)

which we include for completeness. We note, however, that the isospin assumption
Γ(f0 → K+K−) = Γ(f0 → K0K̄0) on which (5.30) and the expressions involving R′

depend, could be spoiled by phase-space effects. Specifically, because the decay thresh-
olds of both the f0 → K+K− and f0 → K0K̄0 channels are beyond the f0 mass peak,
the slope of its wide resonance could significantly break the isospin assumption. As the
ππ final states have a much lower threshold and thus access to a large phase space, we
expect the equality in (5.29) involving R to be stable under the above considerations.
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Using the measurement R = 0.75+0.11
−0.13, which was reported by BES2 in 2005 [157],

the authors of Ref. [137] have used the above relations to extract

BR(f0 → π+π−) = 0.50+0.07
−0.09 (5.31)

and BR(f0 → K+K−) = 0.125+0.055
−0.065. Using the 2006 BaBar result R′ = 0.69±0.32 [158],

we find BR(f0 → π+π−) = 0.35 ± 0.08 and BR(f0 → K+K−) = 0.24 ± 0.06. Because
of the near 1σ discrepancy of these results and the preceding discussion concerning the
possible f0 → KK̄ isospin-breaking effects, we do not use the latter result.

By näıvely assuming a narrow width for the f0, we can combine the average in (5.27)
with (5.31) to obtain

BR(Bs → J/ψf0)
∣∣
avg

=
(
2.55+0.62

−0.51

)
× 10−4. (5.32)

To compare with the estimates given in (5.25) and (5.26) it is necessary to express this
experimental branching ratio, as defined in (3.104), in terms of a theoretical branching
ratio as defined in (3.105). To this end, we may employ the experimentally measured
effective lifetime [159]

τJ/ψf0 = [1.700± 0.040 (stat)± 0.026 (syst)] ps, (5.33)

together with the dictionary given in (3.107). This gives

BR(Bs → J/ψf0)|avg =
(
2.25+0.56

−0.46

)
× 10−4. (5.34)

Thus the colour-suppressed tree topologies by themselves account for the correct order
of magnitude of the measured B0

s → J/ψf0 branching ratio in the quark–antiquark
picture. However, in view of the large errors, we cannot draw further conclusions about
the hadronic structure of the f0(980) from this exercise.

5.2.3 The effective lifetime

5.2.3.1 Mass-eigenstate rate asymmetry

As introduced in Section 3.2.1, an untagged time-dependent analysis of Bs mesons decay-
ing to the CP eigenstate J/ψf0 allows us to probe the mass-eigenstate rate asymmetry
of this decay mode. This final state dependent asymmetry is sensitive to CP violation

both in B0
s–B

0

s mixing and in the decay mode. Being an untagged observable, it is un-
affected by tagging related experimental considerations such as the associated efficiency
and systematics. Hereby its extraction also requires less events and it is available sooner.

As the final state J/ψf0 is a CP eigenstate, with CP eigenvalue ηJ/ψf0 = −1, we may
compute its time-dependent observables using the formalism presented in Section (3.2.2).
To that end we will adopt the parameterization for the SM decay amplitude in (5.6),
thereby making the plausible assumption that there is no significant NP contribution at
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the decay amplitude level. Experimental evidence in support of this assumption is given
by the absence of large direct CP violation in the B0

d → J/ψK0 and B+ → J/ψK+

channels [73, 17]. Putting exchange and penguin annihilation topologies aside, these
channels emerge from the same quark-level transitions as B0

s → J/ψf0.

To proceed with the formalism of Section (3.2.2) we make the substitutions

hJ/ψ f0 = ε b, δJ/ψ f0 = ϑ, ϕ
J/ψ f0

1 = 0, ϕ
J/ψ f0

2 = γ. (5.35)

We then find that the direct CP violation in the decay mode is given by

C ≡ C(Bs → J/ψf0) =
−2εb sinϑ sin γ

1 + 2εb cosϑ cos γ + ε2b2
. (5.36)

And, likewise, the hadronic phase shift by

tan ∆φ =
2εb cosϑ sin γ + ε2b2 sin 2γ

1 + 2εb cosϑ cos γ + ε2b2 cos 2γ
. (5.37)

Using only this expression would result in a two-fold ambiguity for ∆φ. However, this
can be lifted using sign information from sin ∆φ and cos ∆φ, which can be computed
using (3.85) and (3.86), respectively.

We may now write the mass-eigenstate rate asymmetry as

A∆Γ ≡ A∆Γ(Bs → J/ψf0) =
√

1− C2 cos(φs + ∆φ), (5.38)

where φs is the B0
s–B

0

s mixing phase given in (3.46).

As discussed in Section 3.3, one way to experimentally probe the mass-eigenstate
rate asymmetry is with an effective lifetime measurement of the untagged decay rate.
The dependence of the effective lifetime on A∆Γ is given by

τJ/ψf0

τBs
=

1

1− y2
s

[
1 + 2A∆Γ ys + y2

s

1 +A∆Γ ys

]
. (5.39)

In (5.33) we already gave the latest experimental determination of the Bs → J/ψf0

effective lifetime by the LHCb experiment.

5.2.3.2 Numerical analysis

In order to estimate the effective lifetime, as well as illustrate the impact of the hadronic
corrections to it, we will assume

γ = (68± 7)◦, (5.40)

which is in agreement with the determination of this angle in Chapter 4 and fits of
the UT [75, 101]. For the hadronic parameters we use the conservative ranges given in
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The effective B0
s → J/ψf0 lifetime as a function of the B0

s –B̄0
s mixing phase φs .

From R. Fleischer et al.: Anatomy of B0
s,d → J/ψf0(980)

Figure 5.3: The effective B0
s → J/ψf0 lifetime as a function of the B0

s–B̄
0
s mixing phase

φs. Assuming γ = (68 ± 7)◦ with 0 ≤ b ≤ 0.5 and 0◦ ≤ ϑ ≤ 360◦ results in the narrow
band in the centre of the curve. The major source of the theoretical error comes from
the value of yTh

s = 0.067± 0.016, as illustrated by the wide band of the curve. This plot
made it onto the cover of the European Physical Journal C (right image).

(5.17). Although these ranges are indeed very large, they enter the observables of the
decay mode with a double Cabibbo suppression. Therefore, to leading order in ε we find

∆φ = 2 ε b sin γ cos θ +O(ε2) ≈ [6◦] b sin γ cos θ (5.41)

C = −2 ε b sin γ sin θ +O(ε2) ≈ [−0.1] b sin γ sin θ (5.42)

We thus conclude that at a 1σ confidence level the observables lie in the ranges:

∆φJ/ψf0 ∈ [−2.9◦, 2.8◦], |CJ/ψf0| . 0.05. (5.43)

The missing ingredients for predicting the effective lifetime as parameterised by

(5.39) and (5.38) are the B0
s -B

0

s mixing parameters. For the mean Bs lifetime we will
use the experimental value given in (3.53). To give a Standard Model prediction, we
may use the theoretical prediction for ys given in (3.43) together with the φSM

s given in
(3.47). These combine to give

τJ/ψf0

∣∣
SM

= (1.624± 0.031) ps, (5.44)

In Figure 5.3 we show the dependence of τJ/ψf0/τBs on the phase φs = φSM
s + φNP

s .
Here also ys is taken to depend on φNP

s as given by the expression in (3.45) and motivated
by the accompanying discussion. The LHCb measurement given in (5.33) is shown as
the top horizontal band (the central value is indicated by the dashed line), which is
about 1σ above the upper bound for the lifetime. Thus the measurement of τJ/ψf0

offers an interesting probe for CP-violating NP contributions to B0
s–B̄

0
s mixing. The

lower horizontal band in Figure 5.3 illustrates the impact of a future measurement of
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Figure 5.4: Measurement of the Bs → J/ψf0(980) lifetime projected onto the φs–∆Γs
plane. Error bands correspond to the effective lifetime measurement (left panel) and
the hadronic phase shift and mean Bs lifetime (right panel).

τJ/ψf0/τBs at the 1% level, assuming, purely for illustration, a value of φs = −45◦. It is
clearly an important goal to push the measurement of the effective B0

s → J/ψf0 lifetime
to the 1% level.

The main source of uncertainty in the numerical analysis of the effective lifetime up
to this point is the theoretical estimate yTh

s . This input can be avoided if we instead plot
the effective lifetime as a contour in the φs–∆Γs plane, as discussed in Section 3.3.2. In
Figure 5.4 we do precisely this, showing also the corresponding experimental errors of
the effective lifetime measurement (left panel) and the effect of the hadronic phase shift
(right panel). As the final state J/ψf0 is CP-odd, this contour can be combined with a
contour of an effective lifetime measurement for a CP-even decay mode to pinpoint the
Bs mixing parameters. In the Chapter 4 we presented such a CP-even contour for the
Bs → K+K− effective lifetime. In Section 5.4 we will perform this combination.

In Ref. [76] an effective lifetime measurement is given for the Bs → J/ψπ+π− decay
mode:

τJ/ψπ+π− = 1.652± 0.024± 0.024 ps. (5.45)

The π+π− final state is considered in the mass range 775 to 1550 MeV, and the f0(980)
resonance is estimated to give a contribution of 70% in this window [160]. Although
this result is more accurate than that given in (5.33), the fact it is not purely given by
the f0(980) resonance only further complicates the question of which decay topologies
contribute. We therefore do not use it in our numerical analysis.

5.2.4 Mixing-induced CP asymmetry

A tagged analysis, from which we can distinguish between initially present B0
s or B̄0

s

mesons, allows us to measure the time-dependent, CP-violating rate asymmetry as de-
fined for a general final state in (3.72). The observables C and A∆Γ for the decay mode
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Figure 5.5: Left panel : the mixing-induced CP asymmetry of B0
s → J/ψf0 as a function

of the B0
s–B̄

0
s mixing phase φs; assuming γ = (68± 7)◦, 0 ≤ b ≤ 0.5 and 0◦ ≤ ϑ ≤ 360◦

gives the error band. Right panel : individual errors associated with the input quantities,
zoomed in on the region φs ∈ [−10◦, 10◦] close to the SM case.

under consideration have already been given in (5.36) and (5.38), respectively. The
remaining mixing-induced CP-violating observable is given by

S ≡ S(Bs → J/ψf0) = −
√

1− C2 sin(φs + ∆φ). (5.46)

In order to explore the impact of the hadronic effects, we assume again (5.17) with
(5.40), resulting in ranges for ∆φ and C as given in (5.43). In the left panel of Figure 5.5,
we show the dependence of S on the B0

s–B̄
0
s mixing phase φs, with the band showing

the contributing errors added in quadrature. Our SM prediction, which is indicated by
the error bar, is given by

S(B0
s → J/ψf0)

∣∣
SM
∈ [0.012, 0.086], (5.47)

which should be compared with the näıve SM value (sinφs)|SM = 0.036± 0.002, which
corresponds to b = 0. The right panel of Figure 5.5 is a zoomed in version of the same
plot, focusing on smallish phases φs. Here the individual errors associated with the
input parameters have been included, revealing that b and ϑ lead to a comparable and
sizable error in this φs domain, whereas the error on γ in (5.40) is negligible. These
plots are complemented by Figure 5.6, where we show the dependence of S and C on
(b, ϑ) and the resulting correlation between these observables for the SM central value
of φs.

From these plots and the range in (5.47) we see that a large value of |S| would
give unambiguous evidence for NP in B0

s–B̄
0
s mixing. However, such a scenario is now

essentially excluded by the LHCb measurement of these mixing parameters given in
(3.48) using the Bs → J/ψφ decay mode. Regarding the measurement of mixing-
induced CP violation in B0

s → J/ψf0, LHCb has performed such an analysis for the
decay mode B0

s → J/ψ π+π− [160, 76]. As discussed in Section 5.2.3, the π+π− final
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state is considered in a mass window where the f0(980) resonance only contributes to
approximately 70% of the events. In terms of addressing hadronic uncertainties in the
extraction of the mixing parameters this strategy is less optimal than focusing purely
on the f0(980). The result of this analysis, which assumes S = − sin(φs), is [76]

S = 0.14±0.16
−0.17. (5.48)

It is compatible with the SM prediction given in (5.47), however the errors are still too
large to draw conclusions about the presence or absence of New Physics. In particular,
should a future measurement of S fall into the range

0 . S . 0.1, (5.49)

the hadronic SM effects related to the b parameter would preclude conclusions on the
presence or absence of CP-violating NP contributions to B0

s–B̄
0
s mixing, unless we have

insights into this parameter. First constraints can be obtained through the measurement
of direct CP violation in B0

s → J/ψf0. However, this asymmetry takes a value of at
most ∼ 5% in Figure 5.6 and will be challenging to measure precisely.

5.2.5 The B0
d → J/ψf0(980) channel

5.2.5.1 Decay amplitude and observables

An interesting decay to obtain an insight into the size of the hadronic parameter beiϑ

is B0
d → J/ψf0(980), which we will abbreviate from here on as B0

d → J/ψf0. In order
to obtain its decay topologies, we need only interchange all strange and down quarks in
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Figure 5.1. The leading colour-suppressed tree-diagram-like topology emerges from the
dd̄ component of the f0(980) state.

A key feature of the B0
d → J/ψf0 mode is that the CKM factors λ

(d)
q ≡ VqdV

∗
qb enter

the expression for the decay amplitude. If we assume the SM and apply the unitarity
of the CKM matrix, we arrive at

A(B0
d → J/ψf0) = −λA′

[
1− b′eiϑ′eiγ

]
, (5.50)

where A′ and b′eiϑ
′

take the same form as (5.7) and (5.8), respectively. In contrast
to the B0

s → J/ψf0 amplitude (5.6), the hadronic parameter b′eiϑ
′

is not suppressed
by ε. Consequently, its impact is effectively magnified in B0

d → J/ψf0 with respect to
B0
s → J/ψf0.

In contrast to the Bs meson system, the Bd meson system has a negligibly small
decay width difference: yd ≈ 0 as given in (3.54). Therefore no interesting information,
specifically no mass-eigenstate rate asymmetry, is extractable from an untagged time-
dependent measurement. However, a CP violating rate asymmetry can be extracted for
B0
d → J/ψf0 analogous to the Bs case, and is given by

Γ(Bd(t)→ J/ψf0)− Γ(B̄d(t)→ J/ψf0)

Γ(Bd(t)→ J/ψf0) + Γ(B̄d(t)→ J/ψf0)
= C ′ cos(∆Mdt) + S ′ sin(∆Mdt). (5.51)

We can apply the same formalism presented in Section 3.2.2 for Bs decay modes to CP
eigenstates to find expressions for the observables C ′ and S ′ of the Bd decay mode. To
this end we make the substitutions

h′J/ψ f0
= −b, δ′J/ψ f0

= θ′, ϕ
′J/ψ f0

1 = 0, ϕ
′J/ψ f0

2 = γ. (5.52)

For the direct CP violating observable we thus find

C ′ ≡ C(Bd → J/ψf0) =
2b′ sinϑ′ sin γ

1− 2b′ cosϑ′ cos γ + b′2
. (5.53)

And for the phase shift of the decay mode we find

tan ∆φ′ =
−2b′ cosϑ′ sin γ + b′2 sin 2γ

1− 2b′ cosϑ′ cos γ + b′2 cos 2γ
. (5.54)

These two parameter allow us to define the mixing-induced CP violation as

S ′ ≡ S(Bd → J/ψf0) = −
√

1− C ′2 sin(φd + ∆φ′), (5.55)

where φd is the B0
d–B̄

0
d mixing phase given in (3.56). A measurement of C ′ and S ′ would

allow us to determine b′ and θ′, with the corresponding expressions given in Ref. [78].
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5.2.5.2 Specific assumptions about the f0(980)

As we did for Bs → J/ψf0 in Section 5.2.2.2, let us now discuss the forms of the
hadronic parameter b′eiθ

′
in the quark–antiquark and tetraquark frameworks. In the

quark–antiquark case, in analogy to the flavour decomposition for the B0
s → J/ψf0

channel in (5.10), we obtain for the Bd → J/ψf0 decay:

A
′(c)
T =

sinϕM√
2

Ã
′(c)
T,dd̄

, A
′(qt)
P =

sinϕM√
2

Ã
′(qt)
P,dd̄

, (5.56)

where the amplitudes A
′(c)
E , A

′(u)
E and A

′(qt)
PA take the same forms as their B0

s → J/ψf0

counterparts. Using SU(3)F flavour symmetry, we can drop the qq̄ subscripts. Moreover,
we can then also identify the B0

d → J/ψf0 amplitudes with their B0
s → J/ψf0 partners,

i.e. can simply drop the primes. This results in the following expression for the hadronic
B0
d → J/ψf0 parameter:

b′eiϑ
′
∣∣∣
qq̄

= Rb




cosϕM

{
Ã

(ut)
PA

}
+ 1√

2
sinϕM

{
Ã

(ut)
P + Ã

(u)
E + 2Ã

(ut)
PA

}

cosϕM

{
Ã

(c)
E + Ã

(ct)
PA

}
+ 1√

2
sinϕM

{
Ã

(c)
T + Ã

(ct)
P + 2Ã

(c)
E + 2Ã

(ct)
PA

}


 ,

(5.57)
which can be compared with (5.11).

In contrast to the conventional SU(3)F strategies involving decays of B(s,d) mesons
into pions and kaons, there is a complication due to the presence of the mixing angle
ϕM, as reflected in the expressions (5.11) and (5.57). A particularly interesting situation
arises when

cosϕM =
1√
2

sinϕM, (5.58)

which is satisfied for ϕM = 55◦. In this case, we have

|f0(980)〉 =
1√
3

[
|uū〉+ |dd̄〉+ |ss̄〉

]
, (5.59)

which gives

beiϑ
∣∣
qq̄

= Rb

[
Ã

(ut)
P + Ã

(u)
E + 3Ã

(ut)
PA

Ã
(c)
T + Ã

(ct)
P + 3Ã

(c)
E + 3Ã

(ct)
PA

]
= b′eiϑ

′
∣∣∣
qq̄
. (5.60)

We could then simply identify the beiθ of the B0
s → J/ψf0 channel with the b′eiθ

′
of the

B0
d → J/ψf0 mode. Looking at the current ranges of ϕM summarized in Section 5.2.1.2,

this scenario – or a situation close to it – may actually be realized in nature. It is
interesting to note that the flavour structure of (5.58) corresponds to an SU(3)F singlet,
in analogy to the η1 state of the η–η′ system of the pseudo-scalar mesons.

On the contrary, as we discussed in Section 5.2.1, the tetraquark interpretation of
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the f0(980) appears to be more favourable. In this picture, we obtain

A
′(c)
T =

1√
2
Ã
′(c)
T,sdd̄s̄

A
′(qt)
P =

1√
2
Ã
′(qt)
P,sdd̄s̄

A
′(c)
E =

1√
2

[
Ã
′(c)
E,suūs̄ + Ã

′(c)
E,sdd̄s̄

+ Ã
′(c)
E,uss̄ū + Ã

′(c)
E,dss̄d̄

]
SU(3)F

= 2
√

2Ã
′(c)
E ,

A
′(u)
E =

1√
2
Ã
′(u)
E,uss̄ū =

1√
2
Ã
′(u)
E ,

A
′(qt)
PA =

1√
2

[
Ã
′(c)
PA,suūs̄ + Ã

′(c)
PA,sdd̄s̄

+ Ã
′(c)
PA,uss̄ū + Ã

′(c)
PA,dss̄d̄

]
SU(3)F

= 2
√

2Ã
′(qt)
PA , (5.61)

in analogy to (5.12). The A4q topology shown in Figure 5.2 does not have a counterpart
in B0

d → J/ψf0 for ω = 0 in (5.4), which was assumed in the expressions given above. For
a non-vanishing value of this angle, it would be suppressed by sinω < 0.1. Assuming
again the SU(3)F flavour symmetry to identify the topological amplitudes in B0

d →
J/ψf0 and B0

s → J/ψf0, we arrive at

b′eiϑ
′
∣∣∣
4q

= Rb

[
Ã

(ut)
P + Ã

(u)
E + 4Ã

(ut)
PA

Ã
(c)
T + Ã

(ct)
P + 4Ã

(c)
E + 4Ã

(ct)
PA

]
. (5.62)

5.2.5.3 Estimate of the B0
d → J/ψf0 branching ratio

For experimental studies, it is useful to estimate the branching ratio of the B0
d → J/ψf0

decay. Using (5.6) and (5.50), we obtain the following expression for the ratio of the
CP-averaged decay amplitudes:

∣∣∣∣
〈A(Bd → J/ψf0)〉
〈A(Bs → J/ψf0)〉

∣∣∣∣
2

= ε

[
1− 2b′ cosϑ′ cos γ + b′2

1 + 2εb cosϑ cos γ + ε2b2

] ∣∣∣∣
A′
A

∣∣∣∣
2

, (5.63)

where (5.7) gives ∣∣∣∣
A′
A

∣∣∣∣ =

∣∣∣∣∣
A
′(c)
T + A

′(ct)
P + A

′(c)
E + A

′(ct)
PA

A
(c)
T + A

(ct)
P + A

(c)
E + A

(ct)
PA

∣∣∣∣∣ . (5.64)

Keeping only the tree and penguin contributions and using the SU(3)F symmetry yields
∣∣∣∣
A′
A

∣∣∣∣
qq̄

=
tanϕM√

2
and

∣∣∣∣
A′
A

∣∣∣∣
4q

=
1

2
(5.65)

for the quark–antiquark and tetraquark descriptions of the f0(980), respectively. For
the former case, the result

∣∣∣∣
A′
A

∣∣∣∣
qq̄

∼


F

B0
df0

1 (M2
J/ψ)

F
B0
sf0

1 (M2
J/ψ)



ϕM=41.6◦

∼ 0.44, (5.66)
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which was obtained in Ref. [137] for the qq̄ framework (using dispersion relations, see
Section 5.2.2.3), is in the same ball-park as

tanϕM√
2

∣∣∣∣
ϕM=41.6◦

= 0.63. (5.67)

If we introduce the quantity

Hf0 ≡
1− 2b′ cosϑ′ cos γ + b′2

1 + 2εb cosϑ cos γ + ε2b2
, (5.68)

we can write the branching ratio as

BR(Bd → J/ψf0) = Hf0 × BR(Bd → J/ψf0)0, (5.69)

where

BR(Bd → J/ψf0)0 = ε

∣∣∣∣
A′
A

∣∣∣∣
2(MB0

d
Φ′d

MB0
s
Φs

)3 τB0
d

τB0
s

× BR(Bs → J/ψf0)

[
2− (1− y2

s)
τJ/ψf0

τBs

]
(5.70)

is the branching ratio in the limit b′ = 0; Φ′d denotes the B0
d → J/ψf0 phase-space

factor. This relation holds correspondingly for the branching ratios with f0 → π+π−.
Using (5.27) yields

BR(Bd → J/ψf0; f0 → π+π−)0 =
(
1.32+0.18

−0.23

)
× 10−6, (5.71)

where we have used the tetraquark value in (5.65), which is also in the ball-park of (5.66).
In this estimate, the error is essentially due to (5.27) and does not take (unknown)
theoretical uncertainties into account. As we will see in Section 5.2.5.5, the range
0 ≤ b′ . 0.5 corresponds to 0.8 . Hf0 . 1.6, so that (5.69) yields for the central value
in (5.71) the following range:

BR(Bd → J/ψf0; f0 → π+π−) ∼ (1–3)× 10−6. (5.72)

Since the tetraquark picture corresponds to (5.15) with ϕM = 35◦, it gives a more
predictive estimate of the B0

d → J/ψf0 branching ratio than the quark–antiquark pic-
ture. As we discussed in Section 5.2.1.2, in the latter case, the mixing angle suffers from
large uncertainties. Because the leading contribution to B0

d → J/ψf0 is caused by the
dd̄ component of the f0(980), a mixing angle close to 0◦ or 180◦ would strongly suppress
the decay. Therefore an observation of B0

d → J/ψf0 in the 10−6 regime would imply a
significant dd̄ component of the f0(980).

The LHCb experiment has recently placed the following upper bound on this de-
cay [161]

BR(Bd → J/ψf0; f0 → π+π−) < 1.1× 10−6 (5.73)

at a confidence level of 90%. We may therefore soon know whether the tetraquark picture
holds, or if in the quark–antiquark picture the f0(980) has a significant dd̄ component.
Finally we note that the B0

d → J/ψf0 will also be an interesting topic for the e+e−

Belle-II project.
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5.2.5.4 Hierarchy of topological amplitudes

So far, we have not assumed any hierarchy for the different topologies contributing to
the decays at hand. The dominant contribution is expected to be given by the colour-
suppressed tree amplitude A

(c)
T . Should all other topologies give negligible contributions,

we would simply have b′ = b = 0, and the observables discussed in Sections 5.2.3
and 5.2.4 would not be affected by hadronic uncertainties and the structure of the
f0(980).

Should, in addition to A
(c)
T , only the penguin topologies described by the A

(q)
P ampli-

tudes have a significant impact, thereby resulting in a sizable value of b, the situation
would be given in the SU(3)F limit as follows:

beiϑ = Rb

[
A

(ut)
P

A
(c)
T + A

(ct)
P

]
= b′eiϑ

′
, (5.74)

both in the tetraquark and qq̄ descriptions of the f0(980). In the latter case, however,
we have to assume that the mixing angle ϕM is significantly different from 0◦ or 180◦, as
is evident from (5.56) and (5.57). The hadronic corrections to the mixing-induced CP
violation in B0

s → J/ψf0 could then be constrained by the B0
d → J/ψf0 mode.

In addition to SU(3)F-breaking effects, the relation in (5.74) is affected by additional
topologies. The exchange and penguin annihilation topologies, which involve the specta-
tor quarks, are usually neglected in the literature (see, for instance, Refs. [150, 151, 152]).
In the case of B decays involving the f0(980), there is an interesting argument that sup-
ports their suppression that is related to the decay constant of this state. Namely, the
f0(980) decay constant is defined by

〈f0(p)|q̄γµ(1− γ5)q|0〉 = 〈f0(p)|q̄γµq|0〉 ≡ ff0p
µ, (5.75)

where the axial-vector current does not contribute because of Lorentz symmetry (q ∈
{s, d, u}). Using the CP transformation

(CP) [q̄γµ(1− γ5)q] (CP)† = − [q̄γµ(1− γ5)q] (5.76)

with (CP)†(CP) = 1̂ and (CP)|f0〉 = +|f0〉 in (5.75) as well as the CP invariance of
strong interactions, it follows straightforwardly that the decay constant has to vanish,
i.e. ff0 = 0. The same argument in fact applies to all CP-eigenstate scalar states. Con-
sequently, the exchange and penguin annihilation topologies will vanish in the factoriza-
tion picture as, in this framework, they are proportional to the product fBs,d fJ/ψ ff0 of
the decay constants. This feature suggests that these topologies play an even less pro-
nounced role than they do in B decays into pseudo-scalar/vector mesons. Moreover, it
is plausible to assume that they are suppressed significantly with respect to the penguin
contributions A

(qt)
P of the B0

s,d → J/ψf0 decays.

Experimental insights into this issue for B decays into conventional mesons can be
obtained through the B0

d → J/ψφ [81] and B0
s → J/ψπ0 modes [78], which can only
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Figure 5.7: Decay topologies contributing to the B0
s → J/ψπ0 (top row) and B0

d → J/ψφ
(bottom row) decays. The creation of a π0 from a colourless state is forbidden by isospin
symmetry (QED effects and electroweak penguin annihilation topologies can circumvent
this argument).

emerge from exchange and penguin annihilation topologies. As shown in Figure 5.7, the
B0
d → J/ψφ and B0

s → J/ψπ0 decays probe the counterparts of the A
(c)
E + A

(ct)
PA and

A
(u)
E + A

(ct)
PA amplitudes, respectively. The current experimental 90% confidence level

upper bounds on the branching ratios can are:

BR(Bd → J/ψφ) < 9.4× 10−7 [162], (5.77)

BR(Bs → J/ψπ0) < 1.2× 10−3 [163]. (5.78)

If we use BR(Bd → J/ψK∗0) = (1.33±0.06)×10−3 [17] and the SU(3) flavour symmetry,
the upper bound in (5.77) allows us to obtain the following constraint:

∣∣∣∣∣
A

(c)
E + A

(ct)
PA

A
(c)
T

∣∣∣∣∣ ∼
(

1− λ2/2

λ

)√
BR(Bd → J/ψφ)

BR(Bd → J/ψK∗0)
. 0.1. (5.79)

Here A
(c)
E , A

(ct)
PA and A

(c)
T denote exchange, penguin annihilation and colour-suppressed

tree amplitudes in these decays, which are the counterparts of those contributing to
B0
s,d → J/ψf0. Since we have two vector mesons in the final state, angular distributions

should be used to disentangle the different final-state configurations. For simplicity, we
have just assumed generic sizes for the topological amplitudes. The upper bound in
(5.79) supports the expectation that the exchange and penguin annihilation topologies
are strongly suppressed. It would be important to further improve the upper bound in
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vary. Likewise, the dashed lines are fixed points of ϑ′ with b′ allowed to vary.

(5.77) and to put constraints on the B0
s → J/ψπ0 branching ratio that are much more

stringent than the one in (5.78), which was published by L3 in 1997.

The scalar meson counterpart of B0
s → J/ψπ0 is given by the B0

s → J/ψ a0
0(980)

channel, where

a0
0(980) =

1√
2

(
uū− dd̄

)
and a0

0(980) =
1√
2

(
[su][s̄ū]− [sd][s̄d̄]

)
(5.80)

in the quark–antiquark and tetraquark pictures, respectively. If we neglect the isospin-
suppressed topologies corresponding to those in Figure 5.7, we only get a contribution
from the exchange topology in the quark–antiquark description of the a0

0(980). On
the other hand, in the tetraquark picture, we get an additional contribution from the
counterpart of the A4q topology in Figure 5.2. Upper bounds on the branching ratio of
the B0

s → J/ψa0
0 channel and their comparison with B0

s → J/ψπ0 would therefore allow
us to put some constraints on the A4q contribution.

Another interesting decay in this context is B0
s → J/ψκ̄0(800), which receives only

contributions from colour-suppressed tree and penguin topologies in the quark–antiquark
picture of the scalar state κ̄0(800) = sd̄. On the other hand, in the tetraquark descrip-
tion, κ̄0 = [su][ūd̄], we get an additional contribution from the counterpart of the A4q

topology. However, the properties of the κ meson, which appears to have a very large
width around of 500 MeV and sits close to the Kπ threshold, are essentially unknown
[17].
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5.2.5.5 Control of the hadronic effects in B0
s → J/ψf0

Once the branching ratio of B0
d → J/ψf0 has been measured, we can determine Hf0

introduced in (5.68) by rewriting expressions (5.69) and (5.70) as follows:

Hf0 =
1

ε

∣∣∣∣
A
A′
∣∣∣∣
2
(
MB0

s
Φs

MB0
d
Φ′d

)3
τB0

s

τB0
d

BR(Bd → J/ψf0)

BR(Bs → J/ψf0)
. (5.81)

In the left panel of Figure 5.8, we show the correlation between the hadronic parameters
for various values of Hf0 , assuming b = b′ and ϑ = ϑ′ in (5.68); even dramatic corrections
to these relations would have a small impact because of the ε suppression in (5.68).
Under the same assumption, we also show in the right panel of Figure 5.8 the correlation
between Hf0 and the direct CP asymmetry C ′ of the B0

d → J/ψf0 channel. First
constraints on b′ can be obtained from Hf0 from

(b′)max
min =

∣∣∣∣∣∣

(
1 + εHf0

1− ε2Hf0

)
cos γ ±

√[(
1 + εHf0

1− ε2Hf0

)
cos γ

]2

+
Hf0 − 1

1− ε2Hf0

∣∣∣∣∣∣
, (5.82)

which, for ε = 0, corresponds to the bounds derived in Ref. [164]. This constrained will
be significantly sharpened via the measurement of C ′. Once the mixing-induced CP
asymmetry S ′ of B0

d → J/ψf0 is measured, the quantity Hf0 will no longer be needed
for the determination of b′ and θ′.

As we have seen in the previous section, we expect the exchange and penguin an-
nihilation topologies to play a minor role in the B0

s,d → J/ψf0 decays. In the quark–
antiquark picture, assuming that the mixing angle ϕM is significantly different from 0◦

or 180◦, we would then have (5.74) in the SU(3)F limit, and could control the hadronic
effects in the mixing-induced CP asymmetry of the B0

s → J/ψf0 decay.2 The theoretical
uncertainties are governed by SU(3)F-breaking corrections and the situation would be
similar to B0

s → J/ψφ, as discussed in Ref. [81].

As we have seen in Section 5.2.1, the tetraquark description of the f0(980) has a
variety of phenomenological advantages. But in this framework we have to deal with
the additional topology A4q shown in Figure 5.2, which contributes to B0

s → J/ψf0 but
does not have a counterpart in B0

d → J/ψf0. Can we make quantitative statements
about the A4q topology? The topology contributes also in the spectator approximation
and arises at the tree level, i.e. is not loop-suppressed like the penguin contributions. On
the other hand, it involves the production of the J/ψ through a colour-singlet exchange,
in analogy to the penguin and exchange topologies in Figure 5.1. Furthermore, the us
diquark and the ūs̄ anti-diquark have to be produced in the decay of the b quark in
such a way as to form the f0(980) bound state, which suggests a possible suppression.
Presumably strong attractive forces are at work between these quark correlations, but
the hadronization mechanism itself is essentially unknown.

2In the case of ϕM close to 0◦ or 180◦, the B0
d → J/ψa0

0(980) channel offers an alternative to
B0
d → J/ψf0. It is the “scalar-meson” counterpart of the B0

d → J/ψπ0 decay [148, 149, 78].
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The central question for the analysis of the B0
s,d → J/ψf0 system is the competition

between the 4q and penguin topologies in (5.14). Should the former give a contribution
at the same – or even larger – level as the penguins, which would be reflected by a
sizeable value of b, we could not control the hadronic effects through the B0

d → J/ψf0

channel. In view of this situation, more detailed studies of the b parameter in the
tetraquark description of the f0(980) would be very important.

5.3 η and η′ as ss̄ states

We will now consider the final state Bs → J/ψss̄ when the bound state ss̄ is assumed
to hadronise into a pseudoscalar η or η′ meson. The key complication in this analysis is
due to imprecise experimental knowledge of the mixing angle between these two isospin
singlet states, and also to what extent a gluonic component contributes. This analysis
is therefore very similar to that of Bs → J/ψf0 discussed in Section 5.2 with the f0(980)
assumed be a conventional quark-antiquark state. In particular, we will estimate the
hadronic uncertainties for the untagged and tagged observables of these decay modes
and propose strategies to constrain them using the Bd decays to the same final states,
which are related by SU(3)F flavour symmetry. This section follows closely the work
presented in Ref. [165].

In Ref. [151] the SU(3)F flavour symmetry related decay modes Bd → J/ψη(′) and
Bs → J/ψη(′) were used in a strategy to determine the angle γ. This method is a variant
of the Bs,d → J/ψKS strategy proposed in Ref. [147, 100]. However, neither strategy is
as competitive for determining γ as other more conventional methods, including those
discussed in Chapter 4. In this section we will therefore assume γ is fixed by some other
means in the same way as we did in Section 5.2.

Unfortunately the Bs,d → J/ψη(′) decay modes are challenging to measure at hadron
colliders because the η(′) mesons decay prominently to photons and neutral pions. Cur-
rently the branching ratios of all but Bd → J/ψη′ have been measured by the Belle
collaboration, which we will present in this section. These measurements will allow us
to place constraints on the η–η′ mixing angles and the relative contribution of a possible
gluonic component. An optimal determination will be possible once the Bd → J/ψη(′)

branching ratio is also measured. Measuring the observables of these modes, including
time-dependent tagged and untagged analyses, will be particularly suited to future e+e−

colliders such as the upcoming Belle-II experiment.

The outline is as follows: in Section 5.3.1, we give a brief overview of η–η′ mixing and
discuss how it is implemented in the B0

s → J/ψη(′) decay amplitudes. In Section 5.3.2,
we turn to the effective lifetimes and the CP-violating observables of the B0

s → J/ψη(′)

transitions. In Section 5.3.3, we focus on the B0
d → J/ψη(′) decays and their role as

control channels. Finally, in Section 5.3.4 we discuss the determination of the mixing
angles between the isospin singlet states contributing to η and η′ using current and
future branching ratio measurements.
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5.3.1 η–η′ mixing

Before focusing on the Bs → J/ψη(′) decays, we will first give a brief overview of η–η′

mixing. The physical |η〉 and |η′〉 states are mixtures of the octet and singlet states |η8〉
and |η1〉, respectively, and can be written as follows [17]:

(
|η〉
|η′〉

)
=

(
cos θP − sin θP
sin θP cos θP

)
·
(
|η8〉
|η1〉

)
, (5.83)

where

|η8〉 =
1√
6

(
|uū〉+ |dd̄〉 − 2|ss̄〉

)
, |η1〉 =

1√
3

(
|uū〉+ |dd̄〉+ |ss̄〉

)
. (5.84)

The mixing between the octet and singlet states is a manifestation of the breaking of
the SU(3)F flavour symmetry of strong interactions. Alternatively, η–η′ mixing can be
described in terms of the isospin singlet states

|ηq〉 ≡
1√
2

(
|uū〉+ |dd̄〉

)
, |ηs〉 ≡ |ss̄〉. (5.85)

By also taking the possible mixing with a purely gluonic component |gg〉 into account,
we can write the following expressions (for a recent detailed discussion, see Ref. [153]):

|η〉 = cosφP |ηq〉 − sinφP |ηs〉, (5.86)

|η′〉 = cosφG sinφP |ηq〉+ cosφG cosφP |ηs〉+ sinφG|gg〉. (5.87)

Here it has been assumed, for simplicity, that the heavier η′ contains a larger gluonic
admixture than the lighter η and that the coupling of the latter state to |gg〉 is negligible.
Estimates give sin2 φG ∼ 0.1 [166], i.e. |φG| ∼ 20◦, which indicates that the impact of
this contribution is suppressed.

The mixing angle φP is still subject of ongoing studies, using data for processes such
as D+

s → η(′)`+ν` decays and the two-photon width of the η(′) mesons (see Ref. [153]
and references therein). The full spectrum of results correspond to 30◦ . φP . 45◦,
with the majority of analyses converging at values of φP around 40◦. Consequently, the
relations

cosφP ≈
√

2

3
, sinφP ≈

√
1

3
, (5.88)

where the numerical values correspond to φP = 35◦, are affected by uncertainties of
O(20%). These approximate relations result in the simple expressions

|η〉 ≈ 1√
3

(
|uū〉+ |dd̄〉 − |ss̄〉

)
(5.89)

|η′〉 ≈ 1√
6

(
|uū〉+ |dd̄〉+ 2|ss̄〉

)
cosφG + sinφG|gg〉, (5.90)



5.3. η AND η′ AS ss̄ STATES 113

which are useful for SU(3)F analyses of non-leptonic B-meson decays with η(′) mesons
in the final states [150, 152]. In our study we shall follow a similar conceptual avenue,
keeping, however, φP as a free parameter.

The decay amplitudes for the B0
s → J/ψη(′) decay modes can similarly be described

by the amplitude formalism given in (5.6) for the B0
s → J/ψf0 mode. We will label the

associated hadronic parameters accordingly by Aη(′) and bη(′)e
iϑ
η(′) . Furthermore, both

decay modes have dynamics very similar to the B0
s → J/ψf0 with a quark–antiquark

description assumed for the f0 as given in Section 5.2.1. For the B0
s → J/ψη the decay

topology structure is in fact the same. To obtain the transition amplitude in this case
we only need to make the substitution ϕM → ϕP + 90◦ in the relevant formula.

For the B0
s → J/ψη′ mode we may similarly make the substitution ϕM → ϕP . We

find in particular that if we apply the angle relations given in (5.88) the amplitude
structure is analogous to that of the B0

s → J/ψf0 with a tetraquark interpretation
for the f0. However, in this case there is an additional topology that is specific to
the f0 tetraquark state. On the other hand, the B0

s → J/ψη′ mode has an additional
contribution from the gluonic component of the η′. This component can only contribute
through exchange and penguin annihilation topologies, which are expected to be small
in comparison to the tree and penguin topologies, respectively.

5.3.2 Observables

Since 2012 the Belle collaboration now has observations for both the B0
s → J/ψη and

B0
s → J/ψη′ decays, with the following branching ratio measurements [167]:

BR(Bs → J/ψη) =
[
5.10± 0.50 (stat.)± 0.25 (syst.)+1.14

−0.79 (fs)
]
× 10−4 (5.91)

BR(Bs → J/ψη′) =
[
3.71± 0.61 (stat.)± 0.18 (syst.)+0.83

−0.57 (fs)
]
× 10−4. (5.92)

Here the latter errors refer to the Bs fragmentation function fs.

Using the SU(3)F flavour symmetry the theoretically defined B0
s → J/ψη(′) branch-

ing ratios (see Section 3.4) can be related to the B0
d → J/ψK0 branching ratio. Taking

factorizable SU(3)F-breaking corrections into account yields

BR(Bs → J/ψη(′))

BR(Bd → J/ψK0)

∣∣∣∣
fact.

=
τB0

s

τB0
d

[
MB0

s
Φη(′)
s

MB0
d
ΦK0

d

]3

F

B0
sη

(′)

1 (M2
J/ψ)

F
B0
dK

0

1 (M2
J/ψ)




2

, (5.93)

where the τB0
q

and MB0
q

are the B0
q lifetimes and masses, respectively,

ΦP
q ≡

√√√√
[

1−
(
MP +MJ/ψ

MBq

)2
][

1−
(
MP −MJ/ψ

MBq

)2
]

(5.94)

denotes the phase-space factor forB0
q → J/ψP decays, and the F

B0
qP

1 (M2
J/ψ) are hadronic

form factors of quark currents. These relations have been used previously to predict the
B0
s → J/ψη(′) branching ratios [151, 155].
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Now that the branching ratios have been measured, it is possible to probe the non-
factorizable SU(3)F-breaking corrections. To this end we define the quantities

Kη(′)

SU(3) ≡
τB0

d

τB0
s

[
MB0

d
ΦK0

d

MB0
s
Φη(′)
s

]3

F

B0
dK

0

1 (M2
J/ψ)

F
B0
sη

(′)

1 (M2
J/ψ)




2

× BR(Bs → J/ψη(′))

BR(Bd → J/ψK0)

[
1− y2

s

1 + ysAJ/ψη
(′)

∆Γ

]
, (5.95)

where Kη(′)

SU(3) = 1 in the case of vanishing non-factorizable SU(3)F-breaking correc-

tions. Since non-perturbative calculations of the F
B0
sη

(′)

1 (M2
J/ψ) form factors are not yet

available, we project out on the |ηs〉 component in (5.86) and write

F
B0
sη

1 (M2
J/ψ) = − sinφPF

B0
dK

0

1 (M2
J/ψ) (5.96)

F
B0
sη
′

1 (M2
J/ψ) = cosφG cosφPF

B0
dK

0

1 (M2
J/ψ), (5.97)

where we neglect SU(3)F-breaking corrections originating from the down and strange
spectator quarks. Because the effective lifetimes of B0

s → J/ψη(′) have not yet been mea-
sured, we do not have an experimental handle on the mass-eigenstate rate asymmetries

AJ/ψη(′)

∆Γ .

In Section 5.2 the evaluation of A∆Γ has been discussed in detail for the B0
s → J/ψf0

channel. Since the η(′) are pseudoscalar mesons with quantum numbers JPC = 0−+, the
final states of B0

s,d → J/ψη(′) are CP-even. This sign difference results in

AJ/ψη(′)

∆Γ = −
√

1− C2
J/ψη(′) cos(φs + ∆φJ/ψη(′)). (5.98)

Here CJ/ψη(′) describes direct CP violation of these decay modes. The quantity ∆φJ/ψη(′)

is the hadronic phase shift, which can be obtained from

tan ∆φJ/ψη(′) =
2 ε bη(′) cosϑη(′) sin γ + ε2 b2

η(′) sin 2γ

1 + 2 ε bη(′) cosϑη(′) cos γ + ε2 b2
η(′) cos 2γ

. (5.99)

We observe that the hadronic parameters, which are poorly known, enter ∆φJ/ψη(′)

in a doubly Cabibbo-suppressed way. Therefore the effective lifetimes turn out to be
very robust with respect to the hadronic corrections, in analogy to the situation in
B0
s → J/ψf0. As in Section 5.2, we use γ = (68± 7)◦ in order to illustrate the hadronic

effects. As far as the hadronic parameters are concerned, we consider the ranges

0 ≤ bη(′) ≤ 0.5, 90◦ ≤ ϑη(′) ≤ 270◦. (5.100)

Due to the factor Rb ∼ 0.5 in (5.11), which has an analogous form for the η(′) case,
the range for bη(′) is conservative. The range for the strong phase is motivated by the
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Figure 5.9: The mixing-induced CP asymmetry of B0
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assuming γ = (68± 7)◦, 0 ≤ bη(′) ≤ 0.5 and 90◦ ≤ ϑη(′) ≤ 270◦ for the calculation of the
error band. We show only the region close to the SM case.

topological structure entering bη(′) .. For the ranges given in (5.100) the hadronic phase
shift takes values in the interval

∆φJ/ψη(′) ∈ [−3◦, 0◦]. (5.101)

Likewise, the direct CP asymmetry satisfies |CJ/ψη(′)| . 0.05 under these assumptions

and thereby has a negligible impact on AJ/ψη(′)

∆Γ .

To give estimates for Kη(′)

SU(3) we set, for simplicity, AJ/ψη(′)

∆Γ = −1, which corresponds

to no mixing-induced or direct CP violation for these decay modes. Using BR(Bd →
J/ψK0) = (8.71± 0.32)× 10−4 [17] then yields

Kη
SU(3)

∣∣∣
AJ/ψη∆Γ =−1

=

[
sin 40◦

sinφP

]2

×
(
1.4+0.4
−0.3

)
,

Kη′

SU(3)

∣∣∣
AJ/ψη

′
∆Γ =−1

=

[
cos 20◦

cosφG

]2 [
cos 40◦

cosφP

]2

×
(
1.0+0.3
−0.2

)
. (5.102)

These numbers indicate a sizable SU(3)F-breaking correction for B0
s → J/ψη, al-

though the currently large errors preclude us from drawing stronger conclusions. In
Section 5.3.4, we will return to the B0

s → J/ψη(′) branching ratios, using them to ex-
tract the mixing angles φP and φG.

Once the B0
s → J/ψη(′) effective lifetimes have been measured they can be converted

into contours in the φs–∆Γs plane, as discussed in Section 3.3.2. Furthermore, using
complementary information from a second CP-odd final state, such as B0

s → J/ψf0, the
mixing parameters φs and ∆Γs can be extracted. The corresponding theoretical SM
prediction for the effective lifetimes is

τJ/ψη(′)

∣∣
SM

= (1.422± 0.024) ps, (5.103)
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where we have used τBs as given in (3.53).

A tagged analysis of B0
s → J/ψη(′) decays allows the extraction of the mixing-induced

CP observable

SJ/ψη(′) =
√

1− C2
J/ψη(′) sin(φs + ∆φJ/ψη(′)). (5.104)

The minus sign differs from the mixing-induced CP asymmetry of the B0
s → J/ψf0

channel (5.46) because of the opposite CP eigenvalues of the final states. In the right
panel of Figure 5.9, we show the dependence of SJ/ψη(′) on the mixing phase φs and
illustrate how the hadronic SM uncertainties as well as the uncertainties on γ propagate
through. We observe that a future measurement of the mixing-induced CP asymmetry
in the range

−0.09 . SJ/ψη(′) . −0.03 (5.105)

would not allow us to distinguish the SM from CP-violating NP contributions to B0
s–B̄

0
s

mixing. Should we encounter such a situation, more information would be required to
accomplish this task.

5.3.3 Control channels

The leading contributions to the B0
d → J/ψη decay originate from b̄ → c̄cd̄ quark-

level processes. It is the formal counterpart of the B0
d → J/ψf0 mode discussed in

Section 5.2.5. Thus the transition amplitude given in (5.50) applies, and we may label
the corresponding hadronic parameters as A′η and b′ηe

iϑ′η . Again, the key difference of
the B0

d → J/ψη decay with respect to its B0
s → J/ψη counterpart is that the hadronic

parameter b′ηe
iϑ′η does not enter the amplitude in a doubly Cabibbo-suppressed way.

Consequently, its impact is magnified in the B0
d → J/ψη observables. On the other

hand, the branching ratio does suffer from a λ2 suppression.

As discussed in detail in Section 5.2.5.4, the exchange and penguin amplitudes play
a minor role and can be probed through the B0

d → J/ψφ and B0
s → J/ψπ0 decays.

Neglecting these contributions and using the SU(3)F symmetry, we obtain

bηe
iϑη SU(3)F

= Rb

[
Ã

(ut)
P

Ã
(c)
T + Ã

(ct)
P

]
SU(3)F

= b′ηe
iϑ′η . (5.106)

Interestingly, the dependence on φP drops out if the exchange and penguin annihilation
contributions are neglected. Since the parameters b′η and ϑ′η can be determined from
the B0

d → J/ψη observables in a clean way, we can control the penguin effects in the
B0
s → J/ψη observables.

As the b
(′)
η eiϑ

(′)
η are ratios of hadronic amplitudes, we expect (5.106) to be robust

with respect to SU(3)F breaking corrections. Should the B0
d → J/ψη data favour a

small value of b′η, the exchange and penguin annihilation amplitudes could contribute
significant uncertainties in relating b′η to bη. However, the doubly Cabibbo-suppressed
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d → J/ψη, where the
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lines are fixed points of ϑ′η with b′η allowed to vary. In both plots, we have assumed
γ = 68◦.

corrections to the mixing-induced CP violation in B0
s → J/ψη would then be tiny

anyway.

The B0
d → J/ψη decay was observed by the Belle collaboration [168], with

BR(Bd → J/ψη) = [12.3+1.8
−1.7(stat.)± 0.7(syst.)]× 10−6, (5.107)

which is consistent with the estimates given in Ref. [151]. We can use this measurement
to obtain a first constraint on the hadronic parameters with the help of

Hη ≡
1

ε

∣∣∣∣
Aη
A′η

∣∣∣∣
2
(
MB0

s
Φη
s

MB0
d
Φη
d

)3
τB0

s

τB0
d

BR(Bd → J/ψη)

BR(Bs → J/ψη)
.

[
1

2− (1− y2
s) τJ/ψη/τBs

]
, (5.108)

which is the counterpart of Hf0 defined in Section 5.2.5.3. Similarly, it depends on γ
and the hadronic parameters in the following way

Hη =
1− 2b′η cosϑ′η cos γ + b′2η

1 + 2εbη cosϑη cos γ + ε2b2
η

. (5.109)

In order to extract Hη from the branching ratios, we have to calculate the SU(3)-
breaking ratio of the Aη and A′η amplitudes. Using the factorization approximation and
keeping only the leading tree contributions gives

∣∣∣∣
Aη
A′η

∣∣∣∣
fact.

= −
√

2 tanφP


F

B0
dK

0

1 (M2
J/ψ)

F
B0
dπ
−

1 (M2
J/ψ)


 , (5.110)

where we have, as in (5.96), also neglected SU(3)F-breaking corrections that originate
from the down and strange spectator quarks. Using the leading-order light-cone QCD
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sum-rule results of Ref. [156], we find for the form factors

F
B0
dK

0

1 (M2
J/ψ) = 0.615± 0.076, F

B0
dπ
−

1 (M2
J/ψ) = 0.49± 0.06. (5.111)

Because the B0
s,d → J/ψη effective lifetime has not yet been measured we will use

the SM estimate given in (5.103) to correct for the experimental branching ratio (see
Section 3.4). Including the B0

s,d → J/ψη branching ratio measurements given earlier,
we finally arrive at

Hη ×
[

tan 40◦

tanφP

]2

= 1.04+0.29
−0.26

∣∣
BR

+0.40
−0.32

∣∣
FF

= 1.04+0.50
−0.41. (5.112)

The errors reflect only the experimental and form-factor uncertainties and do not take
non-factorizable SU(3)-breaking corrections into account. Using the factorization tests
in (5.102), a future measurement of the B0

s → J/ψη branching ratio should give us
better quantitative insights into these effects. In Figure 5.10, we convert this result into
contours in the ϑ′η–b

′
η plane (see Section 5.2.5.5 for details).

As soon as measurements of the CP asymmetries for B0
d → J/ψη become available

we will be able to determine b′η and θ′η in a clean way. Subsequently, we can determine Hη

through (5.109). Using information from the branching ratios and (5.108) and (5.110),
we can then determine | tanφP |. Alternatively, assuming that we will have a sharp
picture of φP by the time these measurements become available (see also Section 5.3.4),
we can perform a test of non-factorizable SU(3)F-breaking corrections.

Neglecting the exchange and penguin annihilation topologies, the control of the
hadronic parameters in the B0

s → J/ψη′ observables by means of the B0
d → J/ψη′ mode

is analogous to the case of the B0
s,d → J/ψη channels.

5.3.4 Determining the η–η′ mixing parameters

Let us finally discuss determinations of the η–η′ mixing parameters through measure-
ments of the B0

s,d → J/ψη(′) branching ratios. If we project out on the singlet states
in (5.86) and (5.87) and assume that the exchange and penguin annihilation topologies
give negligible contributions, we obtain the relation

Rs ≡
BR(Bs → J/ψη′)

BR(Bs → J/ψη)

(
Φη
s

Φη′
s

)3

=
cos2 φG
tan2 φP

, (5.113)

which does not assume SU(3)F or factorization. The same expression with φG = 0
has already been given in Ref. [169]. Both the Belle and LHCb collaborations have
measurements of the branching ratio fraction

BR(Bs → J/ψη′)

BR(Bs → J/ψη)

∣∣∣∣
exp

=

{
0.73± 0.14 (stat.)± 0.02 (syst.) : Belle [167]
0.90± 0.09 (stat.)+0.06

−0.02 (syst.) : LHCb [170]
. (5.114)
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Figure 5.11: Constraints on the η–η′ mixing parameters from the B0
s,d → J/ψη(′) and

B0
d → J/ψπ0 branching ratios as discussed in the text. Note that the right panel does

not show all the discrete angular ambiguities.

Using these experimental results we find

Rs =

{
0.91± 0.18 : Belle
1.12+0.13

−0.11 : LHCb

= 1.05+0.11
−0.10 (weighted average). (5.115)

In analogy to (5.113), we introduce the following ratio for the Bd decays:

Rd ≡
BR(Bd → J/ψη′)

BR(Bd → J/ψη)

(
Φη
d

Φη′

d

)3

= cos2 φG tan2 φP . (5.116)

Using the experimental value in (5.107), this expression results in the prediction

BR(Bd → J/ψη′) =

[
cosφG
cos 20◦

]2 [
tanφP
tan 40◦

]2

×
(
6.0+1.0
−0.9

)
× 10−6. (5.117)

Only the upper bound

BR(Bd → J/ψη′) < 7.4× 10−6 (90%C.L.) (5.118)

is currently available from the Belle collaboration [168].

Once the B0
d → J/ψη′ branching ratio has been measured, we can use

Rd

Rs

= tan4 φP , RsRd = cos4 φG (5.119)

to determine the mixing angles up to fourfold discrete ambiguities. It is interesting to
note that the 4th powers in these expressions result in precise determinations of | tanφP |
and | cosφG| even for branching ratio measurements with significant errors. If we assume,
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for illustration, a future measurements of Rd = 0.09± 0.05, i.e. with precisions of 50%,
we would obtain φP = (28.6+2.6

−4.0)◦ and |φG| ∈ [52◦, 62◦].

In Figure 5.11, we have illustrated this method, showing the contours for the current
experimental value of Rs in (5.113) and our illustrative value of Rd = 0.6 ± 0.2. It is
interesting to include also the constraint from the following ratio [171]:

R0 ≡
BR(Bd → J/ψη)

BR(Bd → J/ψπ0)

(
Φπ0

d

Φη
d

)3

= cos2 φP . (5.120)

Here penguin annihilation and exchange topologies were again neglected. The penguin
parameters of the B0

d → J/ψπ0 decay [78, 148, 149] are then the same as in the B0
d →

J/ψη(′) modes. In particular, we also expect the same direct and mixing-induced CP
asymmetries. As (5.120) does not depend on φG, we can straightforwardly convert the
Belle result in (5.107) with BR(Bd → J/ψπ0) = (1.76± 0.16)× 10−5 [17] into

φP |R0
=
(
29+8
−12

)◦
. (5.121)

The intersection of the corresponding band in Figure 5.11 with the Rs contour gives
φG = 55◦ for the central values. These results are in good agreement with those discussed
at the beginning of Section 5.3.1. Using these central values for the angles gives the
following prediction

BR(Bd → J/ψη′) =

[
cosφG
cos 55◦

]2 [
tanφP
tan 29◦

]2

×
(
9.0+8.2
−6.3

)
× 10−7. (5.122)

which is in better agreement with the upper bound given in (5.118).

5.4 Effective lifetime constraints

5.4.1 Constraints from current and future data

In Section 3.3.2 we discussed how a pair of Bs effective lifetime measurements of CP
eigenstate final states, one CP-odd and one CP-even, can be used to pinpoint the Bs

mixing parameters φs and ∆Γs. It so happen that such a pair of effective lifetimes
has already been accurately measured by LHCb. In this chapter we have analysed in
detail the effective lifetime of the CP-odd final state J/ψf0(980), with the latest LHCb
measurement given in (5.33). In Figure 5.4 this effective lifetime measurement is shown
in the φs–∆Γs plane. Furthermore, in Chapter 4 we addressed the effective lifetime of
the CP-even final state K+K−. Its LHCb measurement is given in (4.17), and estimates
for the hadronic parameters entering its decay mode in (4.49). In Figure 4.5 effective
lifetime measurement of this CP-even final state is shown in the φs–∆Γs plane. Thus
we have all the ingredients that we need available to perform this analysis.
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Figure 5.12: The measurements of the effective B0
s → K+K− and B0

s → J/ψf0 lifetimes
projected onto the φs–∆Γs plane. Left panel: analysis of the current data, where the
shaded bands give the 1σ uncertainties of the lifetimes; the 68% confidence regions
originating from a χ2 fit are also shown. Right panel : illustration of how the situation
improves for unchanged central values if the uncertainties were improved to 1% accuracy,
including also the constraint from the theoretical value of ∆ΓTh

s /Γs.

In the left panel of Figure 5.12, we show the combined effective lifetime contours of
the B0

s → K+K− and B0
s → J/ψf0(980) decays on the φs–∆Γs plane. The coloured

bands correspond to the 1σ measurement errors. We also show the 68% confidence level
region resulting from a χ2 fit of these two results. The corresponding individual 68%
confidence level χ2 fitted values for the φs and ∆Γs parameters are as follows:

φs = −
(
47+11
−20

)◦
, ∆Γs =

(
0.18+0.04

−0.05

)
ps−1 (5.123)

and
φs =

(
68+8
−13

)◦
, ∆Γs =

(
0.23+0.04

−0.06

)
ps−1. (5.124)

As can be seen from the left panel of Figure 5.12, each solution has a two-fold ambiguity
given by the transformation

φs → φs + 180◦, ∆Γs → −∆Γs. (5.125)

Both lifetime measurements currently have an error of approximately 3%. In the
right panel of Figure 5.12, we show for illustration the impact of measurements of the
B0
s → K+K− and B0

s → J/ψf0 effective lifetimes with 1% uncertainty, assuming no
change in the central values. Clearly, at this level of accuracy, the lifetime measurements
could strongly constrain φs and ∆Γs.

Using the relation in (3.45), we also include the band corresponding to the theoretical
value of yTh

s given in (3.43). We observe, as also noted in Section 5.2.3, that the central
value of the τJ/ψf0 measurement is too large in comparison with this constraint. As
discussed in Section 3.1, this relation relies on the well motivated assumption that NP
effects to Γ12 are negligible. Therefore, should this discrepancy continue to hold, it may
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Figure 5.13: Illustration of the errors of the hadronic phase shifts ∆φK+K− and ∆φJ/ψf0

on the contours in the φs–∆Γs plane for the central values of the lifetime measurements.
We also shown the impact of the present error of the Bs lifetime.

be that the theoretical calculation of yTh
s is too low due to unaccounted for long distance

hadronic effects or a failure of the heavy quark expansion. The B0
s → J/ψf0 effective

lifetime predicted by this theoretical calculation is given in (5.44).

The uncertainties of the hadronic phase shifts given in (5.43) and (4.49) as well as
the error of the Bs mean lifetime were not included in Figure 5.12 or in the fit results in
(5.123) and (5.124). In Figure 5.13, we illustrate the impact of these uncertainties on the
lifetime contours in the φs–∆Γs plane. Comparing with the error bands in Figure 5.12,
we observe that the effects of these uncertainties are marginal with respect to the current
errors of the effective lifetime measurement. More sophisticated fits should take these
uncertainties into account as well.

It is interesting to compare our fitted results to recent measurements of CP violation
using the full-tagged analysis of the Bs → J/ψφ channel. In Figure 5.14 we have
combined the effective lifetime contours and fit results of our analysis described above
with the latest Bs → J/ψφ analysis results from DØ [172], CDF [173], LHCb [76]
and ATLAS [174, 175]. The fitted region from the effective lifetimes is seen to agree
best with the DØ result. However, the tagged analysis from LHCb is considerably more
accurate. This reflects the fact that a tagged analysis is more sensitive to a small mixing-
induced CP violating phase, which can be be seen from the expression for Sf given in
(3.80). Nonetheless, because the effective lifetime curves are flat close to the Standard
Model point, as shown in Figure 3.3.2, ∆Γs could still be determined accurately in this
case. Furthermore, the effective lifetime analysis is sensitive to different experimental
systematics and the hadronic uncertainties involved can be theoretically controlled in
an independent way. It therefore offers an important cross check to the conventional

methods of extracting the B0
s–B

0

s mixing parameters.
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5.4.2 Further promising Bs decays

So far we have discussed the effective lifetimes for the B0
s → K+K− and B0

s → J/ψf0

channels, which have both been measured to an accuracy of 3% by the LHCb collabora-
tion. Recently also the effective lifetime of the B0

s → J/ψKS mode has been measured
to an accuracy of 8% [176]:

τJ/ψKS
= 1.75± 0.12± 0.07 ps. (5.126)

This channel has a CP-odd final state and is caused by b̄ → c̄cd̄ quark-level processes,
i.e. it has a CKM structure that is different from the decays considered above [147, 100].
In particular, the relevant hadronic parameter does not enter in a doubly Cabibbo-
suppressed way. However, the uncertainties can be controlled through B0

d → J/ψπ0 and
are found to have a moderate impact on the effective B0

s → J/ψKS lifetime [177].

Another promising CP-even final state is B0
s → D+

s D
−
s . Here the hadronic correc-

tions are again doubly Cabibbo-suppressed and can be controlled with the help of the
U -spin-related B0

d → D+D− decay [147]. A theoretical analysis of the effective lifetime
of B0

s → D+
s D

−
s was performed in Ref. [178].

Decays of Bs mesons into CP-eigenstate final states with two vector mesons offer
another laboratory for lifetime analyses. Such final states are mixtures of CP-even and
CP-odd eigenstates and can be disentangled by means of angular analyses. It would be
interesting to perform measurements of the lifetimes for the CP-even and CP-odd final-
state configurations and to add them as contours to the φs–∆Γs plane along the lines of
the strategy proposed above. Examples of two such vector final states are B0

s → φφ and
B0
s → K∗0K̄∗0, which are both driven by penguin topologies. Another example is the

decay mode Bs → J/ψφ, which is already subject to a full tagged angular analysis. Also
here it would be desirable to have measurements of the individual lifetimes for the CP-
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even and CP-odd final-state angular configurations separately. This can, for instance, be
achieved with the moment analysis proposed in Ref. [123]. The hadronic uncertainties
of the B0

s → J/ψφ channel can be controlled by channels such as B0
s → J/ψK̄∗0 and

B0
d → J/ψρ0 [81].

Also decays with final states that are not CP-eigenstates can be added to the agenda
to further constrain φs and ∆Γs, provided both a B0

s and a B̄0
s meson can decay into

the same final state. Prime examples are the Bs → D±s K
(∗)∓ channels that are studied

in Section 4.3. The difference in orbital angular momentum L between the DsK and
DsK

(∗) final states can discriminate their curves on the (φs + γ)–∆Γs plane in analogy
to the CP eigenvalue ηf of a CP-eigenstate final state.

5.5 Conclusions

The conventional strategy for extracting theB0
s–B

0

s mixing parameters involves a flavour-
tagged time-dependent angular analysis of the decay mode Bs → J/ψφ. An assumption
that is usually implicit in this analysis is that the vector meson φ is purely an ss̄ state.
As such, penguin topologies, which introduce theoretical hadronic uncertainties into the
extraction, are doubly Cabibbo suppressed as well as OZI suppressed. In this chapter
we have explored the possibilities of performing the same extraction with other hadronic
states in place of the φ that are also believed to have a sizable ss̄ component. Namely,
we considered the scalar meson f0(980) and the pseudoscalar mesons η and η′. Our mo-
tivation for studying these modes is to eventually be able to overconstrain the extraction
of the Bs mixing parameters using many different analysis strategies.

The advantage of picking a non-vector meson for the ss̄ bound state in the Bs →
J/ψss̄ transition is that the angular analysis can be avoided. The challenging feature is
that for both f0(980) and η(′) the exact composition in terms of ss̄ has not been settled.
Regarding the f0(980), even its classification as a conventional quark-antiquark meson,
a tetraquark or some other exotic combination is not yet certain. This leads to an a
priori unknown contribution from CP-violating topologies and consequently significant
theoretical uncertainties.

To get a handle on these uncertainties we have proposed control channels for the
decay modes in question based on SU(3)F flavour symmetry. These control channels
are the Bd counterparts to the same final state hadronic particles, although the charmless
isospin singlet state is typically created from a dd̄ rather than a ss̄ combination. The
prominence of these control channels is therefore dependent on the relative fraction of
dd̄ present; so far only Bd → J/ψη has been observed. Their key feature is that the
contributing CP violating topologies are not doubly Cabibbo suppressed and thereby
the relative dynamics of these topologies can be probed. The flavour symmetry strategy
is applicable if we may assume that exchange and penguin annihilation topologies are
negligible. To this end, improved upper bounds on the branching ratios of B0

d → J/ψφ
and B0

s → J/ψπ0, which are dominated by such topologies, would be very useful.
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Concerning specifically the decay B0
s → J/ψf0, the advantage of not having to per-

form an angular analysis is offset by having approximately a factor of four less events.
Nonetheless, this decay mode is being taken seriously by the LHCb experiment, and
early time-dependent untagged and tagged measurements have been performed. In this
chapter we focused on the hadronic uncertainties present in these observables and gave
their corresponding SM predictions. We found significant differences in the contribut-
ing CP violating topologies depending on whether the conventional quark-antiquark or
tetraquark picture for the f0(980) is subscribed to. In the tetraquark picture we also
pointed out the existence of an additional topology which is not obviously suppressed.
We have predicted the branching ratio of the control channel Bs → J/ψf0 to be of the
order 10−6 in the tetraquark picture or in the quark-antiquark picture with a sizable dd̄
component. LHCb has recently placed an upper bound in this ballpark, which promises
interesting future developments.

The decay modes B0
s → J/ψη(′) are challenging to measure at hadron colliders

because the η(′) mesons dominantly decay to photons and neutral pions. Currently
only branching ratio measurements exist from the Belle collaboration. The hadronic
uncertainties present in this decay are fueled by the experimentally still unsettled mixing
angle between the two isospin singlet states η and η′ and the relative contribution of a
possible gluonic component. By making branching ratio ratios with the control channels
Bd → J/ψη(′), it is possible to estimate these mixing angles. We found that if the ratios
of these two pairs of modes are known to a moderate accuracy then the η–η′ mixing
angle can be determined with to a very good precision. Because the control channel
B0
d → J/ψη′ has not yet been observed, an alternative ratio strategy using Bd → J/ψπ0

and flavour symmetry was considered and found to so far give consistent results. The
study of the B0

s,d → J/ψη(′) modes will be particularly suited for the future e+e− Belle-II
experiment.

In this chapter the effective lifetime observable of the Bs → J/ψf0, which has a CP-
odd final state, was analysed in detail. Specifically, its hadronic errors were estimated,
which allowed us to plot the LHCb measurement of this observable as a contour on the

plane of the B0
s–B

0

s mixing parameters φs and ∆Γs. In Chapter 4 a similar analysis was
performed for the effective lifetime of the Bs → K+K−, which has a CP-even final state.
As discussed in Chapter 3, we have combined the contours for this pair of CP-even and
CP-odd final states in order to pinpoint the location of the mixing parameters. The
result is found to deviate by 1σ from the Standard Model. However, for a small mixing
phase it is not competitive with the full tagged analysis of Bs → J/ψφ, the results of
which suggest that this is indeed the case. Nonetheless, it provides an interesting cross-
check that is subject to different experimental systematics and has no tagging efficiency.
It will be interesting to overconstrain the φs–∆Γs plane with both tagged and untagged
measurements in the future, in analogy to the determination of the apex of the unitarity
triangle.
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Chapter 6

Decay-time profile of a rare decay

6.1 Introduction

The decay Bs → µ+µ− is famous among its peers for being very suppressed in the SM,
very sensitive to New Physics and theoretically relatively clean [179]. Indeed, it was
long hoped that New Physics would induce a branching ratio orders of magnitude larger
than its tiny SM prediction. To be precise, the latest Standard Model prediction for the
branching ratio is [180]

BR(Bs → µ+µ−)SM = (3.65± 0.23)× 10−9, (6.1)

which now includes NLO electroweak effects [181] and NNLO QCD matching correc-
tions [182]. Thus, within the Standard Model, only about one in every 300 million B0

s

mesons is predicted to decay to a pair of muons. In order to express this result as a
time-integrated branching ratio (see Section 3.4) it was assumed that in the Standard
Model only the heavy mass-eigenstate contributes to this decay, giving a maximal mass-
eigenstate rate asymmetry [183]. Using the dictionary given in (3.106), the same result
given in terms of the theoretically defined branching ratio is

BR(Bs → µ+µ−)SM = (3.38± 0.22)× 10−9. (6.2)

This prediction supersedes the prediction given in Ref. [184]. Comparing (6.2) with
(6.1) we thus observe that the Standard Model prediction this branching ratio requires
a maximal correction of ∼ 8% due to the non-zero Bs decay width difference.

Over the last decade upper bounds for the Bs → µ+µ− branching ratio have con-
tinuously move down thanks to the CDF and DØ collaborations at the Tevatron and
the ATLAS, CMS and LHCb experiments at the LHC (for a review, see Ref. [185]).
Finally, in 2012, the LHCb collaboration reported the first evidence for the Bs → µ+µ−

decay with a signal significance of 3.5σ above the background. In 2013 the LHCb and
CMS experiments reported the following results with signal significances of 4σ and 4.3σ,
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respectively:

BR(Bs → µ+µ−)exp =

{ (
2.9+1.1
−1.0

)
× 10−9 LHCb [186](

3.0+1.0
−0.9

)
× 10−9 CMS [187]

= (2.9± 0.7)× 10−9 (6.3)

The last equality is the averaged combination given in Ref. [188]. The agreement with
(6.1) is certainly remarkable. Nonetheless, the experimental errors still allow for sizable
NP contributions, although this will now be a more challenging endeavour.

This chapter is based on the work presented in Refs [184, 183, 189]. In the presence
of a non-zero decay width difference, the decay-time profile of the Bs → µ+µ− transition
allows us to probe the mass-eigenstate rate asymmetryAµµ∆Γ. This asymmetry is sensitive
to New Physics and gives complementary information to the branching ratio. If flavour-
tagging is also included in a study of the decays time profile, a third observable Sµµ,
which is sensitive to mixing-induced CP violation, also becomes accessible. Because
measurements of these time-dependent observables must wait for the era of the LHCb
upgrade, we can assume that φs will be known precisely once data for these observables
become available. Our goal in this chapter is therefore to investigate as well as illustrate
how combinations of the three observables

BR(Bs → µ+µ−), Aµµ∆Γ, Sµµ, (6.4)

can shed light on the possible presence of New Physics in this decay.

This chapter is organized as follows. In Section 6.2 we define the observables in
(6.4) and discuss their properties. In Section 6.3 we introduce various scenarios for New
Physics, classifying them in terms of four general parameters which can in principle be
calculated in any fundamental model and are directly related to the physics of Bs →
µ+µ−. In this context we classify a selection of popular NP models into the considered
scenarios. In Section 6.4 we perform a numerical analysis for three classes of specific
NP models, including current constraints from Bs mixing. In particular we demonstrate
how the measurements of the observables in (6.4) can distinguish between these three
classes. In Section 6.5 we conclude.

6.2 Observables of Bs → µ+µ−

6.2.1 Decay amplitudes

The two muons arising from the decay of a spinless B0
s particle can be in two possible

partial wave states. If the spins of the muons are anti-aligned along some quantization
axis, so that the total spin S = 0, then they form a S-wave state. The S-wave config-
uration, with an orbital angular momentum of L = 0, is CP-odd. On the other hand
if the spins are aligned so that S = 1, then L = 1, giving a CP-even P -wave state. In
Figure 6.1 we have illustrated these two configurations. As we will soon show, in the
language of a low-energy effective Hamiltonian a P -wave state requires the presence of
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ẑ

S = L = 0

B0
s

L = 1

S = 1

µ+ µ−L = 0

S = 0

µ+ µ−

S-wave (CP-odd) P-wave (CP-even)

Figure 6.1: The two possible partial wave states for the pair of muons arising from a
Bs → µ+µ− transition.

scalar operators. In the Standard Model such operators are strongly suppressed due to
the weak coupling of the Higgs boson to muons. Also the CP-violating phase present in

the S-wave decay cancels against the B0
s -B

0

s mixing phase in the Standard Model. As
a result only the heavy mass-eigenstate contributes to this decay. Detecting the light
mass-eigenstate decaying to two muons could therefore indicate New Physics in the form
of new scalar particles, new CP violation, or both.

Although the partial waves give an intuitive understanding of the final state, it will
be more convenient to proceed in a helicity basis. Once we have established amplitudes
in this basis we will return to their interpretation in terms of partial waves. In the
discussion that follows we will for generality refer to muons with the generic lepton
label `. The helicity final states that give nonzero contributions are |`+

L `
−
L 〉 and |`+

R`
−
R〉,

which behave under a CP transformation as

CP|`+
R`
−
R〉 = eiξ``|`+

L `
−
L 〉, CP|`+

L `
−
L 〉 = e−iξ``|`+

R`
−
R〉, (6.5)

with ξ`` an unphysical convention-dependent phase. The eigenstates of the CP operator
are thus

|(`+`−)±〉 ≡
1√
2

(
|`+

R`
−
R〉 ± eiξ`` |`+

L `
−
L 〉
)
, (6.6)

corresponding to the CP-even (P -wave) and CP-odd (S-wave) states discussed earlier,
respectively.

Let us now consider the decay amplitudes. In the Standard Model the contributing
topologies are given in Figure 6.2. Beyond the Standard Model it’s possible that new
heavy gauge bosons or scalar particles with effective FCNC couplings also contribute to
the decay, as shown in Figure 6.3. In order to discuss this decay in a model-independent
way, we will make use of a low-energy effective Hamiltonian formalism, as introduced
in Chapter 2. The Wilson coefficients and operators relevant for the decay in question
are [190, 191]

Heff = −GF α√
2π

{
V ∗tsVtb

10,S,P∑

i

(CiOi + C ′iO′i) + h.c

}
, (6.7)
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B0
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W
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ℓ

ℓ
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ℓ

ℓ

ℓ

Figure 6.2: Feynman diagrams contributing to B0
s → `+`− in the Standard Model.

B0
s

H0, A0

b

s

ℓ

ℓ

B0
s

Z ′

b

s

ℓ

ℓ

∆bs
L,R(Z ′) ∆bs

L,R(H)

Figure 6.3: Examples of amplitudes that could contribute to B0
s → `+`− beyond the

Standard Model. Left panel: a Z ′ gauge boson with effective tree-level FCNC coupling
∆bs
L,R(Z ′) to quarks. Right panel: same as before but with the Z ′ replaced by a scalar

or pseudoscalar boson H.

with the operators1

O10 = (s̄γµPLb)(¯̀γµγ5`), O′10 = (s̄γµPRb)(¯̀γµγ5`),

OS = mb(s̄PRb)(¯̀̀ ), O′S = mb(s̄PLb)(¯̀̀ ),

OP = mb(s̄PRb)(¯̀γ5`), O′P = mb(s̄PLb)(¯̀γ5`). (6.8)

In the Standard Model C ′10, C
(′)
S and C

(′)
P are all negligibly small. The Wilson coefficient

C10, driven by the topologies in Figure 6.2, is given by [192]

CSM
10 = −ηY sin−2 θW Y0(xt) = −4.134, (6.9)

where

Y0(xt) =
xt
8

[
xt − 4

xt − 1
+

3xt
(xt − 1)2

lnxt

]
(6.10)

describes the loop dynamics with xt = m2
t/M

2
W . The coefficient ηY is a QCD factor that

for mt = mt(mt) is close to unity: ηY = 1.012 [193, 194]. Note that while C10 and C ′10

are dimensionless, the coefficients C
(′)
S and C

(′)
P have dimension GeV−1.

In principle, corrections to the above formalism can arise from loop topologies with
internal charm and up quark exchanges. However, these are both doubly Cabibbo
suppressed and suppressed by the Bs → µ+µ− dynamics. They can thereby be neglected.

1The operator O10 defined here is different to the four quark ∆B = 1 operator of the same name
given in Section 2.2.
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Using the low-energy effective Hamiltonian given above, the B
0

s → `+
λ `
−
λ decay am-

plitude can be expressed as

〈l+λ1
l−λ2
|Heff |B0

q 〉 = −GF α

2
√

2π
V ∗tsVtb

{

− (C10 − C ′10) ū(p2, λ2) γµγ5v(p1, λ1)〈0|s̄ γµ(1− γ5) b|B0

s〉
+ (CS − C ′S) ū(p2, λ2) v(p1, λ1)〈0|s̄ (1− γ5) b|B0

s〉

+ (CP − C ′P ) ū(p2, λ2) γ5 v(p1, λ1)〈0|s̄ (1− γ5) b|B0

s〉
}
, (6.11)

where ū(p2, λ2) and v(p1, λ1) are the Dirac spinors for the outgoing leptons. We will
denote the decay constant for the pseudoscalar meson B0

s , which is defined for a generic
pseudoscalar in (2.42), as fBs . The conservation of parity symmetry in the strong
force implies that the vector current 〈0|s̄γµ b|B0

s (p)〉 vanishes. Contracting the above
expressions with pµ and applying the Dirac equation then gives

〈0|s̄γ5b|B0
s (p)〉 = −i M2

Bs

mb +ms

fBs , 〈0|s̄ b|B0
s (p)〉 = 0, (6.12)

where pµ = pb,µ + ps,µ and p2 = M2
Bs

. The Dirac spinor products can be contracted for
individual helicities to give

ū(R
L ) v(R

L ) = −MBs

√
1− 4

m2
`

M2
Bs

, ū(R
L )γ5 v(R

L ) = ±MBs , (6.13)

with the other combinations zero. Inserting the decay constants and spinor products
into (6.11) then gives

〈`+
R`
−
R|Heff |B0

s 〉 =− iGF α fBs√
2π

CSM
10 MBsm` V

∗
tsVtb {−P + S} ,

〈`+
L `
−
L |Heff |B0

s 〉 =− iGF α fBs√
2π

CSM
10 MBsm` V

∗
tsVtb e

iξ`` {P + S} , (6.14)

where

P ≡ C10 − C ′10

CSM
10

+
M2

Bs

2m`

(
mb

mb +ms

)(
CP − C ′P
CSM

10

)
≡ |P |eiϕP , (6.15)

S ≡
√

1− 4m2
`

M2
Bs

m2
Bs

2m`

(
mb

mb +ms

)(
CS − C ′S
CSM

10

)
≡ |S|eiϕS , (6.16)

arise from the scalar and pseudoscalar lepton densities, respectively. We observe that
the contributions to the amplitude from the operators C

(′)
10 are proportional to the lepton

mass m`. The axial-vector coupling produces a lepton–anti-lepton pair with opposite
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chirality. Because the leptons must have equal helicity to conserve angular momentum,
one of the leptons has a helicity opposite to its chirality, which is only possible for a
massive fermion. This dependence on a nonzero lepton mass is reflected by the factor
m`/MBs relative to the scalar operators, which can couple to lepton pairs with the same
chirality, is known as helicity suppression.

Similarly for B0
s → `+

λ `
−
λ we find

〈`+
R`
−
R|Heff |B0

s 〉 =− iGF α fBs√
2π

CSM
10 MBsm` VtsV

∗
tb e

i(ξBs−ξb+ξs) {P ∗ + S∗} , (6.17)

〈`+
L `
−
L |Heff |B0

s 〉 =− iGF α fBs√
2π

CSM
10 MBsm` VtsV

∗
tb e

i(ξBs−ξb+ξs+ξ``) {−P ∗ + S∗} , (6.18)

where the * denotes that the weak phases ϕP and ϕS have been conjugated. Long-
distance contributions, via intermediate off-shell photons in the case of KL → µ+µ− for
example [195], are assumed to be completely negligible for these decays. Therefore we
can neglect CP conserving strong phases in these amplitudes.

The helicity amplitudes can be expressed in terms of partial waves amplitudes,

〈(`+`−)L,S |Heff |
(-)

B0
s 〉, using the dictionary

〈`+
λ `
−
λ |Heff |

(-)

B0
s 〉 =

∑

L,S

√
2L+ 1C 1

2
1
2
(S 0;λ (−λ))CLS(0 0; 0 0) 〈

(
`+`−

)
L,S
|Heff |

(-)

B0
s 〉,

(6.19)
where Cj1 j2(J M ; m1m2) are Clebsch-Gordon coefficients and λ ∈ {R : 1/2; L : −1/2}.
As shown in Figure 6.1, the relevant partial wave amplitudes are L = 0, S = 0 and
L = 1, S = 1, which correspond to the CP-odd S-wave and CP-even P -wave discussed
earlier, respectively. We indeed find that

〈
(
`+`−

)
0,0
|Heff |

(-)

B0
s 〉 =

1√
2

[
〈`+

R`
−
R|Heff |

(-)

B0
s 〉 − 〈`+

L `
−
L |Heff |

(-)

B0
s 〉
]

= 〈(`+`−)−|Heff |
(-)

B0
s 〉,

〈
(
`+`−

)
1,1
|Heff |

(-)

B0
s 〉 = − 1√

2

[
〈`+

R`
−
R|Heff |

(-)

B0
s 〉+ 〈`+

L `
−
L |Heff |

(-)

B0
s 〉
]

= −〈(`+`−)+|Heff |
(-)

B0
s 〉.

(6.20)

We are now in a position to consider the decays of the mass-eigenstates in terms of
the partial waves. These are

〈(`+`−)−|Heff |Bs,H〉 = 2N |P | cos
(
ϕP − φNP

s /2
)
,

〈(`+`−)−|Heff |Bs,L〉 = −2 iN |P | sin
(
ϕP − φNP

s /2
)
,

〈(`+`−)+|Heff |Bs,H〉 = −2 iN |S| sin
(
ϕS − φNP

s /2
)
,

〈(`+`−)+|Heff |Bs,L〉 = 2N |S| cos
(
ϕS − φNP

s /2
)
, (6.21)

where

N ≡ −iGF α fBs√
2π

CSM
10 MBsm` VtsV

∗
tb e

i(ξBs−ξb+ξs) e−iφ
NP
s /2 (6.22)
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The phase φNP
s represents the CP-violating New Physics contributions to B0

s–B̄
0
s mixing,

as defined in (3.46). In the Standard Model only C10 is non-negligible, thus from (6.16)
we see that P SM = 1 and SSM = 0. It follows that in the Standard Model only the
heavy mass-eigenstate can decay to two muons. A contribution from the lighter mass-
eigenstate would require New Physics in the form of either new CP-violating phases
(ϕP , ϕS or φNP

s nonzero) or scalar operators O(′)
S . Therefore the mass-eigenstate rate

asymmetry, defined in (3.70), which can be probed with an untagged measurement, is
an ideal observable for this decay.

In principle it is experimentally possible to measure the helicities of the outgoing
lepton pair. However, if no attempt is made to disentangle them, then we measure their
sum:

|〈`+`−|Heff |Bs,(H
L )〉|

2 ≡
∑

λ∈{L,R}

|〈`+
λ `
−
λ |Heff |Bs,(H

L )〉|
2 =

∑

L,S

|〈
(
`+`−

)
L,S
|Heff |Bs,(H

L )〉|
2.

(6.23)
The squared amplitudes for the Bs mass eigenstates to a specific helicity final state are
independent of helicity:

|〈`+
λ `
−
λ |Heff |Bs,H〉|2 = 2|N |2

{
|P |2 cos2

(
ϕP − φNP

s /2
)

+ |S|2 sin2
(
ϕS − φNP

s /2
)}
,

|〈`+
λ `
−
λ |Heff |Bs,L〉|2 = 2|N |2

{
|P |2 sin2

(
ϕP − φNP

s /2
)

+ |S|2 cos2
(
ϕS − φNP

s /2
)}
, (6.24)

Thus for the mass-eigenstate rate asymmetry we find [183]

A``∆Γ ≡
Γ(Bs,H → `+`−)− Γ(Bs,L → `+`−)

Γ(Bs,H → `+`−) + Γ(Bs,L → `+`−)

=
|P |2 cos(2ϕP − φNP

s )− |S|2 cos(2ϕS − φNP
s )

|P |2 + |S|2 . (6.25)

If the lepton helicities are separably measurable, then a mass-eigenstate rate asymmetry
A``,λ∆Γ can be measured for each helicity. However, because the mass eigenstate decay
rates are not dependent on helicity, the seperable rate asymmetries are equal: A``,λ∆Γ =
A``∆Γ. Because in the SM P = 1 and S = 0, as we discussed earlier, we have that

A``∆Γ

∣∣
SM

= 1, (6.26)

a maximal asymmetry that reflects the complete dominance of the heavy mass-eigenstate.

For untagged measurements of Bs → `+`−, the ability to distinguish between the
helicity final states would be interesting if there were CP conserving strong phases
present in the amplitude. In that case we should redefine the parameters P and S as
P = |P |ei(ϕP+δP ) and S = |S|ei(ϕS+δS) for strong phases δP and δS. Then the longitudinal
polarization asymmetry is given by

A``hel ≡
[
Γ(Bs,H → `+

L `
−
L ) + Γ(Bs,L → `+

L `
−
L )
]
−
[
Γ(Bs,H → `+

R`
−
R) + Γ(Bs,L → `+

R`
−
R)
]

[
Γ(Bs,H → `+

L `
−
L ) + Γ(Bs,L → `+

L `
−
L )
]

+
[
Γ(Bs,H → `+

R`
−
R) + Γ(Bs,L → `+

R`
−
R)
]

=
2|P ||S| sin(ϕP + ϕS − φNP

s ) sin(δP − δS)

|P |2 + |S|2 , (6.27)
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which can only be non-vanishing if there is a strong phase difference. However, as
already mentioned earlier, strong phases are assumed to be negligible for these processes,
let alone a strong phase difference. Because this asymmetry is also experimentally
challenging to measure, we will not consider it further.

6.2.2 Time-dependent rates

We now specialize to the case of two final state muons. The time-dependent rate for a
B0
s meson decaying to two muons with a specific helicity λ = L,R is given by

Γ(B0
s (t)→ µ+

λ µ
−
λ ) =

G4
F M

4
W sin4 θW
16π5

∣∣CSM
10 VtsV

∗
tb

∣∣2 f 2
BsmBsm

2
µ

√
1− 4m2

µ

m2
Bs

×
(
|P |2 + |S|2

)

×
{
Cλµµ cos(∆Ms t) + Sµµ sin(∆Ms t)

+ cosh

(
ys t

τBs

)
+Aµµ∆Γ sinh

(
ys t

τBs

)}
× e−t/τBs , (6.28)

where τBs ≡ 2/(ΓH + ΓL) is the Bs mean lifetime and ys is defined in (3.19). The
time-dependent rate for a B̄0

s meson is obtained from the above expression by replacing
Cλµµ → −Cλµµ and Sµµ → −Sµµ. The time-dependent observables for both rates can be
expressed in terms of the parameters defined in (6.16) as [183, 196]

Cλµµ = −ηλ
[

2|PS| cos(ϕP − ϕS)

|P |2 + |S|2
]
, (6.29)

Sµµ =
|P |2 sin(2ϕP − φNP

s )− |S|2 sin(2ϕS − φNP
s )

|P |2 + |S|2 , (6.30)

and Aµµ∆Γ as given in (6.25). Only the observable Cλµµ is dependent on the helicity of
the final state i.e. it depends on the parameter ηλ ≡ {+1: L;−1: R}. We see explicitly
that the presence of the observable Aµµ∆Γ is a consequence of the sizable Bs decay width
difference ∆Γs.

As we already noted earlier, in practice the sum of the muon helicities λ is measured:

Γ(B0
s (t)→ µ+µ−) ≡

∑

λ=L,R

Γ(B0
s (t)→ µ+

λ µ
−
λ ),

Γ(B̄0
s (t)→ µ+µ−) ≡

∑

λ=L,R

Γ(B̄0
s (t)→ µ+

λ µ
−
λ ). (6.31)

We observe from equations (6.28) and (6.29) that Cλµµ, which was dependent on the
muon helicity, cancels in both sums [183].
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The Bs → µ+µ− helicity-summed time-dependent untagged rate is then given by

〈Γ(Bs(t)→ µ+µ−)〉 ≡ Γ(B0
s (t)→ µ+µ−) + Γ(B̄0

s (t)→ µ+µ−)

=
G4
F M

4
W sin4 θW
4π5

∣∣CSM
10 VtsV

∗
tb

∣∣2 f 2
BsmBsm

2
µ

√
1− 4m2

µ

m2
Bs

×
(
|P |2 + |S|2

)

× e−t/τBs [cosh (ys t/τBs) +Aµµ∆Γ sinh (ys t/τBs)] . (6.32)

Similarly, the helicity-summed time-dependent tagged rate asymmetry is

Γ(B0
s (t)→ µ+µ−)− Γ(B̄0

s (t)→ µ+µ−)

Γ(B0
s (t)→ µ+µ−) + Γ(B̄0

s (t)→ µ+µ−)
=

Sµµ sin(∆Mst)

cosh(yst/τBs) +Aµµ∆Γ sinh(yst/τBs)
. (6.33)

It is important to clarify that although there is no explicit term for direct CP violation
in the rate asymmetry, this does not mean that the absolute values squared of Sµµ and
Aµµ∆Γ necessarily sum to one, as could be inferred from the relation given in (3.74). These
two observables also have an implicit dependence on Cλµµ, the rate asymmetry for B0

s

and B̄0
s decays to the specific helicity muon final states. This gives the relation

|Sµµ|2 + |Aµµ∆Γ|2 = 1− |Cλµµ|2 = 1−
[

2|PS| cos(ϕP − ϕS)

|P |2 + |S|2
]2

. (6.34)

Thus if there are no new CP-violating phases in the mixing or decay amplitudes, ϕP =
ϕS = φNP

s = 0 such that Sµµ = 0, Aµµ∆Γ does not have to take its SM value of 1. The

presence of a non-negligible scalar operator O(′)
S , so that |S| 6= 0, is sufficient to ensure

that Aµµ∆Γ 6= 1, as can also be seen from (6.25).

In contrast to the branching ratio, the dependence on fBs cancels in both Aµµ∆Γ and
Sµµ. Consequently, they are effectively theoretically clean. Moreover, these observables
are also not affected by the ratio fd/fs of fragmentation functions, which are the major
limitation of the precision of the Bs → µ+µ− branching ratio measurement at hadron
colliders [197]. As Aµµ∆Γ does not rely on flavour tagging, which is especially challenging
for a rare decay, it can be determined sooner. As discussed in Section 3.2, with enough
statistics a full fit to the time-dependent untagged rate will give Aµµ∆Γ. With limited
statistics, an effective lifetime measurement may be easier, which corresponds to fitting
a single exponential to this rate as defined in Section 3.3.

6.2.3 The branching ratio

As discussed in Section 3.4, a Bs → µ+µ− branching ratio measurement amounts to
counting all events over all (accessible) time, and is thus defined as the time integral of
the untagged rate given in (6.32):

BR(Bs → µ+µ−) ≡ 1

2

∫ ∞

0

〈Γ(Bs(t)→ µ+µ−)〉 dt. (6.35)
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Therefore the combined LHCb and CMS branching ratio results given in (6.3) are more
precisely described as a measurement of the Bs → µ+µ− time-integrated decay rate.
In contrast, the SM prediction for the Bs → µ+µ− branching ratio given in (6.2) is
computed theoretically for one instant in time, namely at t = 0 i.e. it neglects the
effects of B0

s–B̄
0
s mixing. Specifically, in this case the branching ratio definition from

(3.105) is used, giving

BR(Bs → µ+µ−)SM =
τBs
2
〈Γ(Bs(t)→ µ+µ−)〉

∣∣∣
t=0, P=1, S=0

=
τBs G

4
F M

4
W sin4 θW

8π5

∣∣CSM
10 VtsV

∗
tb

∣∣2 f 2
BsmBsm

2
µ

√
1− 4m2

µ

m2
Bs

, (6.36)

An updated numerical estimate of this quantity is given in (6.2).

As also discussed in Section 3.4, the differing branching ratio definitions in (6.35)
and (6.36) are related by the dictionary given in (3.106), which depends on the mass-
eigenstate rate asymmetry, defined in (6.25) for this decay, and the Bs decay width
difference ys. In the Standard Model this asymmetry takes a maximal value of +1 (see
(6.26) and the surrounding discussion), which results in a maximal discrepancy between
the two definitions of ∼ 8% [183]. The Bs → µ+µ− decay is therefore a prime example
of a decay for which it is important to include this correction.

Beyond the Standard Model, where the parameters P and S can take arbitrary
values, it is straightforward to derive the expression

BR(Bs → µ+µ−)

BR(Bs → µ+µ−)SM

= |P |2 + |S|2. (6.37)

However, because it is not the theoretical but the experimental branching ratio that is
measured, the following ratio serves as a more useful observable [183]:

R ≡ BR(Bs → µ+µ−)

BR(Bs → µ+µ−)SM

=

[
1 +Aµµ∆Γ ys

1 + ys

]
× (|P |2 + |S|2)

=

[
1 + ys cos(2ϕP − φNP

s )

1 + ys

]
|P |2 +

[
1− ys cos(2ϕS − φNP

s )

1 + ys

]
|S|2, (6.38)

where the sizable decay width difference ys enters. The parameter R is related to R
defined in Ref. [183] by R = (1 − ys)R. Combining the theoretical SM prediction in
(6.1) with the experimental result in (6.3) gives

R = 0.79± 0.20 (6.39)

This range should be compared with the SM value RSM = 1.
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6.3 Constrained scenarios and their phenomenology

6.3.1 Preliminaries

As discussed in the introduction to this chapter, experiments have begun honing in on
the Bs → µ+µ− time-integrated rate, or branching ratio, for which the observable R
parameterises possible NP contributions. Next in line will be a time-dependent analysis,
first without tagging, giving Aµµ∆Γ, and then with tagging, giving Sµµ. The end result
will be three experimental observables, which, if there are scalar operators contributing
to the decay mode, can each contain independent information (see the discussion around
(6.34)).

With the phase φNP
s already significantly constrained by the current data, see (3.48),

these three observables will essentially depend on four unknowns:

|P |, ϕP , |S|, ϕS. (6.40)

Therefore we cannot in general solve for all of these model-independent NP parameters
by considering the decay Bs → µ+µ− alone. One solution is to invoke other b→ sµ+µ−

transitions like the decays B → Kµ+µ− and B → K∗µ+µ−. In particular, as emphasized
in Ref. [198], observables in B → Kµ+µ− are sensitive to CS,P + C ′S,P , rather than
differences of these coefficients, thereby allowing additional complementary tests and
in principle the determination of all Wilson coefficients. However, present form factor
uncertainties in these decays do not yet provide significant new constraints on scalar
operators relative to the ones obtained from Bs → µ+µ−.

We will consider various scenarios for S and P that will allow us to reduce the number
of free NP parameters and eventually, with the help of future data, uniquely determine
them. Our scenarios are motivated by generic features of NP models and, as we will
show, result in a distinct phenomenology for the observables R, Aµµ∆Γ and Sµµ. In the
present section our analysis is dominantly phenomenological, although we do discuss the
motivation behind each scenario and the characteristic features of its phenomenology.
Moreover we indicate what kind of fundamental physics could be at the basis of each
scenario considered and we survey specific models of NP and categorise them into the
scenarios that we will list now.

The four scenarios to be considered are as follows:

A: S = 0

B: P = 1

C: P ± S = 1

D: ϕP , ϕS ∈ {0, π}
The scenarios are intended to be limiting cases, i.e. although we are not aware of a
model that exactly predicts P ± S = 1, P ± S ≈ 1 is conceivable and the resulting
phenomenology will be approximately the same.
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6.3.2 Scenario A: S = 0

6.3.2.1 General formulation

This scenario is realised if CS − C ′S = 0, leaving C
(′)
10 and C

(′)
P free to take non-SM

values as well as CP-violating phases. Thus models with only new gauge bosons or
pseudoscalars naturally fall into this category and consequently, as we will see below,
this scenario includes a number of popular BSM models. Also models with scalars can
qualify, provided the scalars couple left-right symmetrically to quarks so that CS = C ′S.

In this scenario the rate asymmetry between B0
s and B̄0

s decays to the individual
muon helicities vanishes: Cλµµ = 0. Therefore the two time-dependent observables do
not carry independent information, being bound by the constraint

|Sµµ|2 + |Aµµ∆Γ|2 = 1. (6.41)

Specifically,

Aµµ∆Γ = cos(2ϕP − φNP
s ), Sµµ = sin(2ϕP − φNP

s ), (6.42)

while the branching ratio observable is given by

R = |P |2
[

1 + ys cos(2ϕP − φNP
s )

1 + ys

]
. (6.43)

The three observables in (6.42) and (6.43) are given in terms of two unknowns:
|P | and ϕP . As we assume that φNP

s will already be determined once time-dependent
measurements for this decay are possible, Aµµ∆Γ and Sµµ will allow an unambiguous
extraction of the phase 2ϕP . In turn, with the help of R, also |P | can be determined.

The P parameter can also conveniently be expressed as P = 1 + P̃ with

P̃ = |P̃ |eiϕ̃P ≡ δC10 − C ′10

CSM
10

+
m2
Bs

2mµ

(
mb

mb +ms

)(
CP − C ′P
CSM

10

)
. (6.44)

where
δC10 ≡ C10 − CSM

10 . (6.45)

In this notation all NP effects are contained in the parameter P̃ . In the left panel
of Figure 6.4 we show the correlations between R and Aµµ∆Γ in Scenario A using this
notation. We have varied P̃ ∈ [0, 1], and most importantly show the dependence on the
phase ϕ̃P . As will be discussed in detail in Section 6.4, the requirement for new gauge
bosons or pseudoscalars to satisfy our Bs mixing constraints implies that ϕ̃P ∼ π/2 or
ϕ̃P ∼ 0, π, respectively.

Note that in the case of no new phases, ϕP ∈ {0, π}, and φNP
s = 0,

Aµµ∆Γ = 1, Sµµ = 0, R = |P |2. (6.46)

While the first two results coincide with the SM, NP effects can still arise in R.
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6.3.2.2 Examples of models

Essentially all models of New Physics in which no scalar particles contribute to the
Bs → µ+µ− transition qualify for Scenario A. To give a general impression we will give
some examples.

The simplest example is Constrained Minimal Flavour Violation (CMFV). In CMFV
it is assumed that new low-energy effective operators beyond those present in the SM
are very strongly suppressed and that flavour violation and CP violation are governed
by the CKM matrix [199, 200]. Therefore only the Wilson coefficient C10 is non-zero,
and it is restricted to be real. This gives Scenario A with the added restrictions that
ϕP = φNP

s = 0. Consequently the expression in (6.46) applies and NP enters only
through the ratio R.

Beyond CMFV there is the class of NP models that have the same operator structure
as the SM but allow for new CP-violating phases. In this case the general expressions
in (6.42) and (6.43) apply. Examples of such models are the Littlest Higgs Model with
T-Parity (LHT) and 331 models. In these models new physics effects to the branching
ratio and CP observables are expected to be moderate at best [201, 202].

Finally there is the class of models that allow for a new operator structure beyond
that of the SM i.e. beyond the operator C10. A specific example is the Randall–Sundrum
model with custodial protection, in which NP contributions to Bs → µ+µ− are governed
by right-handed flavour-violating Z couplings to quarks [203]. In general Z ′ models
with tree-level FCNC couplings can have new operators and CP-violating structure
as analysed in Ref. [204]. We will discuss such a model further in Section 6.4. Also
a model with NP dominated by the tree-level FCNC contributions of a pseudoscalar
belongs to this class. It has been analysed recently in Ref. [189], and we will also
present complementary implications of this model in Section 6.4.

6.3.3 Scenario B: P = 1

6.3.3.1 General formulation

The simplest realisation of this scenario is C10 = CSM
10 and C ′10 = C

(′)
P = 0. However,

pseudoscalars that couple left-right symmetrically to quarks, so that CP = C ′P , or a
conspiracy of the form C10 − C ′10 = CSM

10 are also allowed. The point is that in this

scenario only scalar operators O(′)
S drive new physics effects in Bs → µ+µ−. In this

sense this case is complementary to Scenario A.

As there are scalar operators present, there is a rate asymmetry in the B0
s and B̄0

s

decays to the individual muon helicities. Therefore the two time-dependent observables
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Figure 6.4: The correlation between the R and Aµµ∆Γ observables in Scenario A (left
panel) and Scenario B (right panel). In Scenario A we have set P = 1 + P̃ and S = 0
with P̃ free to vary. In Scenario B P = 1 and S is free to vary.

do carry independent information. In this scenario the observables are given by

Aµµ∆Γ =
cosφNP

s − |S|2 cos(2ϕS − φNP
s )

1 + |S|2 ,

Sµµ =
− sinφNP

s − |S|2 sin(2ϕS − φNP
s )

1 + |S|2 ,

R =
1 + ys cosφNP

s

1 + ys
+ |S|2

[
1− ys cos(2ϕS − φNP

s )

1 + ys

]
. (6.47)

Again, with precise value of φNP
s to be determined first, these three observables are

in principle sufficient to determine the two NP unknowns, 2ϕS and |S|. Consequently
the untagged observables R and Aµµ∆Γ are already sufficient to determine 2ϕS and |S|.
Moreover, if all three observables are considered, correlations between them will result
that depend on the precise value of φNP

s [189].

In the right panel of Figure 6.4 we show the correlation between R and Aµµ∆Γ for
different values of S [183]. An interesting feature is that for no CP-violating phase,
ϕS = {0, π}, an increase of |S| pushes Aµµ∆Γ → 0. But within current experimental
bounds we have the prediction that Aµµ∆Γ cannot take a negative value. Moreover in this
scenario |S| ≤ 0.5 is favoured.

6.3.3.2 Examples of models

Models in which only a scalar particle can generate the necessary quark FCNC qualify
for this scenario. An example of a model where such a scalar can arise is a two-Higgs
doublet model (2HDM) in which the heavier scalar particle H0 is considerably lighter
than the pseudoscalar A0. A pseudoscalar with a similar mass and FCNCs to quarks will
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give Scenario C, as we will discuss in Section 6.3.4. Also models with NP dominated by
the tree-level FCNC contributions of a scalar, as recently analysed in Ref. [189], belong
to this class. We will discuss the specific of such models in more detail in Section 6.4.

6.3.4 Scenario C: P ± S = 1

6.3.4.1 General formulation

The meaning of this scenario is clearer if we let P = 1 + P̃ , with P̃ defined in (6.44).
Then the condition P ± S = 1 is equivalent to P̃ = ∓S i.e. in this scenario NP effects
to S and P are on the same footing. If we neglect contributions to C

(′)
10 and mµ with

respect to mBs , this scenario is realised if C
(′)
S = ±C(′)

P .

Letting P̃ = −κS for κ = ±1, the time-dependent observables are

Aµµ∆Γ =
cosφNP

s − 2κ|S| cos(ϕS − φNP
s )

1− 2κ|S| cosϕS + 2|S|2 ,

Sµµ =
− sinφNP

s − 2κ|S| sin(ϕS − φNP
s )

1− 2κ|S| cosϕS + 2|S|2 , (6.48)

which are in general independent. The branching ratio observable is

R =
1− 2κ|S| cosϕS + 2|S|2 + ys[cosφNP

s − 2κ|S| cos(ϕS − φNP
s )]

1 + ys
. (6.49)

If φNP
s is known, then R in combination with Aµµ∆Γ or Sµµ is sufficient to determine the

two NP unknowns ϕS and |S| up to discrete ambiguities. An optimal determination
would involve all three observables, which can resolve the discrete ambiguities.

The observable R is minimised by Scrit = κ(1 + ys)/2 and φNP
s = 0, giving the lower

bound

R ≥ 1− ys
2

. (6.50)

This lower bound, without the ys and phase considerations, was first observed in Ref. [205].
A branching ratio measurement below this bound would thereby rule out this scenario.

If we assume the new physics phase φNP
s in Bs mixing is known, then the purely

untagged observables Aµµ∆Γ and R can solve for S and ϕS. Setting φNP
s = 0 for simplicity,

we have the expressions

|S| = |P − 1| =
√
R (1 + ys)(1−Aµµ∆Γ)

2(1 + ysAµµ∆Γ)
,

cosϕS = −κ cos(ϕ̃P ) =

√
(1 + ysAµµ∆Γ)

2R (1 + ys)(1−Aµµ∆Γ)

[
1− R (1 + ys)Aµµ∆Γ

1 + ysAµµ∆Γ

]
. (6.51)
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Figure 6.5: Scenario C: P ± S = 1. Left panel: the correlation between the R and Aµµ∆Γ

observables. Right panel: correlation between the |S| = |P−1| and ϕS = ϕ̃P +(1+κ)π/2
NP parameters (see text).

In the left panel of Figure 6.5 we show the correlation between R and Aµµ∆Γ in the
limit φNP

s = 0. Observe the lower bound on R specified in (6.50). If, furthermore,
ϕ̃P = ϕS = {0, π} we observe that Aµµ∆Γ can help to resolve the two possible solutions
for S coming from a branching ratio measurement R.

In the right panel of Figure 6.5 we show the correlation between ϕS and |S|. Observe
that the current measurement of R still allows a large range for both NP parameters.
If Aµµ∆Γ were measured with a negative sign it would indicate large contributions from
NP. Moreover in this case the Aµµ∆Γ sharply cuts the R contour, so that a measurement
of Aµµ∆Γ would distinguish between the magnitude and the phase of S up to the twofold
ambiguity in ϕS.

6.3.4.2 Examples of models

A 2HDM in the decoupling regime, such that MH0 ' MA0 ' MH± � Mh (see Ap-
pendix A), has the generic feature that

CS = −CP , C ′S = C ′P . (6.52)

If the couplings of the heavy Higgs bosons are not left-right symmetric, so that either
CS,P or C ′S,P are dominant2, this corresponds to Scenario C. Thus the branching ratio has
a lower bound and a significant scalar NP contribution is indicated by negative values
of Aµµ∆Γ. A precise measurement of the untagged observable Aµµ∆Γ can distinguish the
phase and magnitude of the NP Wilson coefficients. We will analyse a similar scenario
in more detail in Section 6.4.

2In MFV this is the case. Namely C ′S,P /CS,P ∼ ms/mb.
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The above is true also for the MSSM, provided that NP contributions to vector-
axial operators, C ′10, are negligible. The MSSM has the added advantage that large
tan β effects, which are one way to realise the decoupling regime, can give a significant
boost to the scalar operators [206, 207, 208].

If the 2HDM is not in a decoupling regime, then either the physical scalar H0 or
pseudoscalar A0 may be considerably lighter than the other. If this solo particle can
generate the required FCNC, then we are in Scenario B or Scenario A respectively.

6.3.5 Scenario D: ϕP , ϕS ∈ {0, π}
6.3.5.1 General formulation

In this scenario we assume no CP-violating phases in the Bs → µ+µ− decay mode:
ϕP , ϕS ∈ {0, π} [183]. This is equivalent to all of the Wilson coefficients taking real
values. Clearly this constraint can also be applied to the other scenarios discussed in
this section, but this scenario is distinct in that S and P are allowed to remain arbitrary
real values. Yet, in the presence of a non-vanishing NP phase φNP

s , the CP-asymmetry
Sµµ could be non-vanishing.

The resulting time dependent observables in this scenario are

Aµµ∆Γ = cosφNP
s

[ |P |2 − |S|2
|P |2 + |S|2

]
, Sµµ = − sinφNP

s

[ |P |2 − |S|2
|P |2 + |S|2

]
, (6.53)

and the branching ratio observable is given by

R = |P |2
[

1 + ys cosφNP
s

1 + ys

]
+ |S|2

[
1− ys cosφNP

s

1 + ys

]
. (6.54)

Importantly, whereas the branching ratio observable R gives their squared sum,
the Aµµ∆Γ is sensitive to the difference. With known φNP

s these three observables are
sufficient to determine the two NP unknowns |P | and |S|. As sinφNP

s is already known
to be small, Sµµ is also small in this scenario. Consequently Aµµ∆Γ and R will be the
relevant observables in this determination. With cosφNP

s very close to unity one then
finds

|P |2 = (1 + ys)
R

2

[
1 +Aµµ∆Γ

1 + ysAµµ∆Γ

]
, |S|2 = (1 + ys)

R

2

[
1−Aµµ∆Γ

1 + ysAµµ∆Γ

]
. (6.55)

Finally a measurement of Sµµ incompatible with the known value of φNP
s would exclude

this scenario and indicate new CP-violating phases in the decay.

In Figure 6.6 we illustrate how measurements of R and Aµµ∆Γ can be used to pinpoint
the parameters |S| and |P | (we have taken φNP

s = 0).
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Figure 6.6: Scenario D: ϕP , ϕS ∈ {0, π}. The correlation between the |P | and |S|
parameters for varying values of Aµµ∆Γ. Also shown is the current measurement of R.

6.3.5.2 Example of models

Models with Minimal Flavour Violation (MFV), but without flavour blind phases, as
formulated as an effective field theory in Ref. [209], belong naturally to this class. MFV
protects against any additional flavour structure or CP violation beyond what is already
present in the CKM matrix, while still allowing for additional, higher-dimensional, op-
erators [209]. MFV therefore falls into Scenario D, with the added restriction that also
φNP
s is zero. Thus in models with MFV, as seen in (6.55), the time-dependent untagged

observable Aµµ∆Γ together with the branching ratio observable R are sufficient to disen-
tangle the scalar contribution S from P . A measurement of Sµµ 6= 0 would falsify MFV.
Typical examples in this class are MSSM with MFV and 2HDM with MFV.

An exception are models with MFV and flavour-blind phases, like the 2HDM with
such phases, also known as 2HDMMFV [210]. In this case model specific details are nec-
essary in order for the time-dependent observables to distinguish between the operators
and phases.

6.3.6 Summary

In Table 6.1 we have collected the properties of the selected models discussed above
with respect to the basic phenomenological parameters listed in (6.40) together with
the scenarios they belong to. We also indicate whether the phase φNP

s can be non-zero
in these models. In all cases |P | is generally different from zero as it contains the SM
contributions. In order to distinguish between different models in each row of this table
a more detailed analysis has to be performed taking all existing constraints into account.
However, already identifying which of these four rows has been chosen by nature would
be a tremendous step forward.
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Model Scenario |P | ϕP |S| ϕS φNP
s

CMFV A |P | 0 0 0 0

MFV D |P | 0 |S| 0 0

LHT, 4G, RSc, Z ′ A |P | ϕP 0 0 φNP
s

2HDM (Decoupling) C |1∓ S| arg(1∓ S) |S| ϕS φNP
s

2HDM (A Dominance) A |P | ϕP 0 0 φNP
s

2HDM (H Dominance) B 1 0 |S| ϕS φNP
s

Table 6.1: General structure of basic variables in different NP models. The last three
cases apply also to the MSSM.
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Figure 6.7: Tree-level exchange diagrams that contribute to B0
s–B

0

s mixing in models
containing a heavy colourless particle with FCNC couplings to quarks. Left panel: a
heavy Z ′ gauge boson with effective couplings ∆bs

L,R(Z ′). Right panel: a heavy scalar
H0 or pseudoscalar A0 boson with effective couplings ∆bs

L,R(H).

6.4 Specific models and constraints from Bs mixing

6.4.1 Constraints from Bs mixing

In this section we will consider New Physics in the form of new heavy colourless par-
ticles with effective tree-level FCNC couplings to quarks. Specifically, we will consider
a heavy neutral gauge boson, as found for example in Z ′ models, and a heavy neutral
(pseudo)scalar, as found for example in two-Higgs doublet models. We are interested in
the phenomenology of such particles for the ∆B = 1 Bs → µ+µ− transition, as illus-
trated in Figure 6.3. However, New Physics of this nature will naturally also contribute

to ∆B = 2 processes and thereby affect B0
s–B

0

s mixing as shown in Figure 6.7. Thus we
first present a general framework within which we can take constraints from Bs mixing
in account.

We define the flavour-violating couplings of neutral gauge boson Z ′ to quarks as
follows [204]

LFCNC(Z ′) =
[
∆sb
L (Z ′)(s̄γµPLb) + ∆sb

R (Z ′)(s̄γµPRb)
]
Z
′µ, (6.56)

where ∆sb
L,R(Z ′) are generally complex. Similarly, the flavour violating couplings of a
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neutral scalar boson H as [189]

LFCNC(H) =
[
∆sb
L (H)(s̄PLb) + ∆sb

R (H)(s̄PRb)
]
H (6.57)

with also ∆sb
L,R(H) generally complex. We will denote by H any spin 0 particle, and will

refer specifically to a scalar or pseudoscalar as H0 or A0, respectively. The conjugates
are defined as follows:

∆sb
L,R(Z ′) = [∆bs

L,R(Z ′)]∗, ∆sb
L,R(H) = [∆bs

R,L(H)]∗. (6.58)

In a general New Physics scenario the Bs mixing parameters are given by

∆Ms =
G2
F

6π2
M2

W MBs|VtsV ∗tb|2f 2
BsB

VLL
1 η̂B|S(Bs)|, (6.59)

φs = φSM
s − arg[S(Bs)]. (6.60)

Here S(Bs) is a generalization of the S0(xt) function defined in (3.24). Specifically

S(Bs) = S0(xt) +
∑

a

[∆S(Bs)]a , (6.61)

where the label a ∈ {VLL,VRR,RL, SLL, SRR} refers to the operator basis [211]

OVLL
1 = (b̄γµPLs) (b̄γµPLs),

OLR
1 = (b̄γµPLs) (b̄γµPRs),

OLR
2 = (b̄PLs) (b̄PRs),

OSLL
1 = (b̄PLs) (b̄PLs),

OSLL
2 = (b̄σµνPLs) (b̄σµνPLs), (6.62)

with the VRR and SRR operators given by interchanging L → R for VLL and SLL,
respectively. The associated Wilson coefficients, and their NLO corrections, depend on
the type of particle exchanged. In general we may write [189]

[∆S(Bs)](X)AB =
∑

P

r
(X)AB
P (MP )

M2
P

∆bs
A (P )∆bs

B (P )

(VtsVtb
∗)2 (6.63)

where we have summed over the contributing New Physics particles denoted by P . Once
the type and quantity of the new particles are fixed, the remaining model-dependence
is set by the couplings ∆bs

L,R(P ) and the masses MP . The parameters r
(X)AB
P are given

by

r
(X)AB
P (MP ) =

[
12π2

G2
Ff

2
Bs
η̂BBVLL

1 MBsM
2
W

]
× 1

1 + δAB
×
{

+1 : P = Z ′

−1 : P = H

}

×
∑

i

C
(X)AB
P, i (µ) 〈O(X)AB

i (µ)〉, (6.64)
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where i = 1 for X = V and i ∈ {1, 2} otherwise. A key ingredient in this parameterisa-
tion are the hadronic matrix elements

〈O(X)AB
i (µ)〉 ≡ Û(µb, µ)ji 〈B0|O(X)AB

j (µb)|B0
s 〉

=
MBsf

2
Bs

3
P

(X)AB
i (µ), (6.65)

which are evaluated at the high energy matching scale µ. We have expressed them in
terms of the universal QCD factors P

(X)AB
i (µ) as defined in Ref. [211]. For example,

PVLL
1 (µ) = [η(µb, µ)]VLLB

VLL
1 (µb) (6.66)

describes the evolution of the bag parameter dominant in the Standard Model. By
setting the high energy matching scale to the top quark mass µ = µt ≡ mt(mt) we
recover the familiar combination

PVLL
1 (µt) = η̂BB

VLL
1 (µb) = ηBB̂Bs , (6.67)

from Section 3.1, where we used η̂B = [η(µb, µt)]VLL.

The current most precise lattice calculations for the bag parameters corresponding
to the operators listed in (6.62) are given in Ref. [72]. The resulting hadronic matrix
elements are given in Table 6.2 at matching scales of 1 TeV and mt(mt). We note,
however, that the lattice value for the operator OVLL

1 , dominant in the Standard Model,
does not currently agree perfectly with the lattice world average that we used in (3.39)
(which has yet to include this value). In summary, we have

fBs

√
BVLL

1 =





211± 8 MeV : tmQCD [72]
237± 14 MeV : Fermilab Lattice/MILC [212]
226± 12 MeV : Lattice averages (not incl. tmQCD) [27]

(6.68)

at a common scale µb = mb. The Standard Model value of ∆Ms given in (3.40) uses the
lattice world average of Ref. [27], which we will continue to use throughout this chapter.
It is also the value used by Refs [184, 189] on which this chapter is based. However,
contrary to these papers, we will use the more recent results of Ref. [72] for the full

B
(X)AB
i operator basis.

The other important ingredient in the evaluation of r
(X)AB
P are the Wilson coeffi-

cients, which are dependent on the type of (effective) tree-level particle exchanged. In
Ref. [213] these coefficients have been calculated for neutral scalars and gauge bosons
at NLO using the MS–NDR scheme.

Combining these ingredients, we can calculate values of r
(X)AB
P for specific particle

masses. In Table 6.3 we list values corresponding to exchanged scalars and gauge bosons
with masses of 100 GeV, 500 GeV and 1 TeV. Thus once we fix the new tree-level
particle content and their masses, the only freedom that remains is in choosing the
FCNC couplings ∆bs

L,R. In the following sections we will consider scenarios in which
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µ 〈OVLL
1 (µ)〉 〈OLR

1 (µ)〉 〈OLR
2 (µ)〉 〈OSLL

1 (µ)〉 〈OSLL
2 (µ)〉

1 TeV 0.063 -0.15 0.19 -0.08 -0.15
mt(mt) 0.067 -0.12 0.15 -0.07 -0.13

Table 6.2: Hadronic matrix elements 〈O(X)AB
i (µ)〉, evaluated at µ = 1 TeV and µ =

mt(mt), in units of GeV3 using the lattice calculations of Ref. [72].

M rVLL
Z′ (M) rLR

Z′ (M) rLR
H (M) rSLL

H (M)
1 TeV 22 -104 -130 28

500 GeV 23 -96 -120 27
100 GeV 24 -85 -102 25

Table 6.3: r
(X)AB
P (M) in units of TeV2 as defined in (6.64) using the lattice calculations

of Ref. [72]. The matching scale is set to µ = M .

these couplings are described in terms of a single complex parameter. The allowed
values of this parameter are then constrained by the experimental measurements of
∆Ms and φs, as given in (3.41) and (3.48), respectively.

We will enforce the following constraints on the specific models we consider

−5.4◦ ≤ φs ≤ 14.4◦, 16.9 ps−1 ≤ ∆Ms ≤ 18.7 ps−1. (6.69)

The bounds on φs are the ±2σ experimental uncertainties as given in (3.48). The bounds
on ∆Ms correspond to the experimental value ±5% to account for hadronic uncertain-
ties, corresponding to the 1σ errors on lattice average given in (6.68). Considering the
current disagreement between the values listed in (6.68), this range is a bit aggressive
(±10% would be more conservative). The advantage of taking an aggresive range is
that it better illustrates how different scenarios of New Physics may be distinguished
between in the future. Namely, using the lattice average value of Ref. [27] gives a
Standard Model prediction for ∆Ms above this range, which requires certain models of
New Physics to resolve this tension via new CP-violating phases. Had we instead used
the tmQCD [27] value, the Standard Model prediction would be below this range, and
the necessary resolutions from New Physics would be different. This latter case is not
studied numerically, but the change in conclusions can be inferred from the theoretical
discussion given in Section 6.3.

6.4.2 Gauge boson exchange

6.4.2.1 Basic formulae

We begin by considering Z ′ models in which NP contributions to FCNC observables
are dominated by tree-level Z ′ exchanges. A detailed analysis of these models has
recently been presented in Ref. [204]. Also there the three observables in (6.4) have been
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considered but the emphasis has been put on the correlations of them with ∆B = 2
observables, in particular φs. Here we will complement this study by computing the
correlations among R, Aµµ∆Γ, and Sµµ.

The flavour-violating couplings of Z ′ are defined in (6.56). We also define the Z ′

couplings to muons

L`¯̀(Z ′) =
[
∆``
L (Z ′)(¯̀γµPL`) + ∆``

R(Z ′)(¯̀γµPR`)
]
Z
′µ (6.70)

and introduce

∆µµ̄
A (Z ′) = ∆µµ̄

R (Z ′)−∆µµ̄
L (Z ′). (6.71)

Then the non-vanishing Wilson coefficients contributing to Bs → µ+µ− are given as
follows:

sin2 θWC10 = −ηY Y0(xt)−
1

g2
SM

1

M2
Z′

∆sb
L (Z ′)∆µµ̄

A (Z ′)

V ∗tsVtb
, (6.72)

sin2 θWC
′
10 = − 1

g2
SM

1

M2
Z′

∆sb
R (Z ′)∆µµ̄

A (Z ′)

V ∗tsVtb
, (6.73)

where

g2
SM = 4

GF√
2

α

2π sin2 θW
. (6.74)

As only the coefficients C10 and C ′10 are non-vanishing this NP scenario is governed
by the formulae (6.42) and (6.43). Indeed this scenario is an example of Scenario A in
which, in addition to S = 0, also the pseudoscalar contributions vanish. Yet, as P can
differ from unity and have a nontrivial phase, a rich phenomenology is found [204].

6.4.2.2 Numerical analysis

As in the analyses in Refs. [204, 189] it will be instructive to consider the following four
schemes for the gauge boson couplings and in the next subsection for scalar couplings:

1. Left-handed Scheme (LHS) with complex ∆bs
L 6= 0 and ∆bs

R = 0,

2. Right-handed Scheme (RHS) with complex ∆bs
R 6= 0 and ∆bs

L = 0,

3. Left-Right symmetric Scheme (LRS) with complex ∆bs
L = ∆bs

R 6= 0,

4. Left-Right asymmetric Scheme (ALRS) with complex ∆bs
L = −∆bs

R 6= 0.

Note that the ordering in flavour indices in the couplings in these schemes is governed
by the operator structure in B0

s–B̄
0
s mixing [204, 189] and differs from the one in (6.56)

and (6.57). In this context one should recall the relations given in (6.58) giving the
conjugate couplings, where the scalar coupling has a chirality flip.
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Figure 6.8: Sµµ versus R for LHS (left) and RHS (right), assuming MZ′ = 1 TeV and
∆µµ
A (Z ′) = 0.5. Gray region: exp 1σ range for R. The 2 σ CL combined fit region for

the Wilson coefficients C
(′)
10 come from a general b→ sl+l− analysis given in Ref. [215].

The ranges for Bs mixing given in (6.69) result in two allowed regions for the mag-
nitudes and phases of the quark couplings ∆sb

L,R depending on the scheme chosen above.
These regions in parameter space are dubbed oases. The oases for each scheme have a
two fold degeneracy in the complex phase of the coupling. Where it is relevant we will
distinguish between these two different oases using the colours blue and red.

Concerning the direct lower bounds on MZ′ from collider experiments, the most
stringent bounds are provided by the CMS experiment [214]. However, these constraints
are most sensitive to the couplings of the Z ′ to the light quarks,which do not play any role
in our analysis. Moreover, the collider bounds on MZ′ are generally model dependent.
While for the so-called sequential Z ′ the lower bound for MZ′ is in the ballpark of
2.5 TeV, in other models values as low as 1 TeV are still possible. In order to cover large
set of models, we will choose as our nominal value MZ′ = 1 TeV. With the help of the
formalism given in Ref. [204] it is possible to estimate how our results would change for
1 TeV ≤MZ′ ≤ 3 TeV.

In order to perform the present analysis we assign ∆µµ̄
A (Z ′) = 0.5, as was done in

Ref. [204]. In Section 6.4.3.3 and beyond, where we compare Z ′ exchange with various
(pseudo)scalar exchanges, this coupling will be allowed to vary. The sign of this coupling
is crucial for the identification of various enhancements and suppressions with respect to
SM branching ratio and CP asymmetries and impacts the search for successful oases in
the space of parameters that has been performed in Ref. [204]. In Figure 6.8 we show the
correlation between Sµµ and R for LHS (left) and RHS (right) schemes. Corresponding
correlations between Aµµ∆Γ and R and between Aµµ∆Γ and Sµµ are given in Figure 6.9 for
LHS only. As we mentioned above, the two colours correspond to two parameter oases
consistent with the ∆Ms and φs constraints given in (6.69).

We observe in analogy with findings of Ref. [204] that the correlations in the LHS
and RHS schemes have the same shape except the oases and consequently the colours in
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Figure 6.9: Aµµ∆Γ versus R (left) and Aµµ∆Γ versus Sµµ (right) for LHS, assuming MZ′ =
1 TeV and ∆µµ

A (Z ′) = 0.5. Gray region in left panel: exp 1σ range for R. The 2σ
CL combined fit region for the Wilson coefficient C10 comes from a general b → sl+l−

analysis given in Ref. [215].

Figure 6.8 have to be interchanged. We therefore conclude that on the basis of the three
observables that we consider it is not possible to distinguish between LHS and RHS
schemes because in the RHS scheme one can simply interchange the oases to obtain the
same physical results as in LHS scheme. Consequently if one day we will have precise
measurements ofAµµ∆Γ, Sµ+µ− and BR(Bs → µ+µ−) we will still not be able to distinguish
for instance whether we deal with LHS scheme in the blue oasis or RHS scheme in the
red oasis.

As pointed out in Ref. [204], in order to make this distinction one has to consider
simultaneously B → K∗µ+µ−, B → Kµ+µ− and b → sνν̄ transitions, which is beyond
the scope of this chapter. However, we do include regions corresponding to the 2 σ CL
combined fits of Ref. [215] for the Wilson coefficients C10 and C ′10, which result from
these transitions, in Figures 6.8 and 6.9 where relevant. The combination of our oases
and these additional constraints gives us valuable information. The allowed values for
the three observables considered are, in this NP scenario,

0.4 ≤ Aµµ∆Γ ≤ 1.0, 0.2 ≤ |Sµ+µ−| ≤ 0.9, 0.5 ≤ R ≤
{

1.3 : LHS scheme
1.0 : RHS scheme

. (6.75)

Moreover, the smallest values ofAµµ∆Γ and largest values of |Sµ+µ− | are obtained for small-
est values of R. The non-zero values of Sµ+µ− originate in Z ′ models from requiring that
∆Ms is suppressed with respect to its SM value in order to achieve a better agreement
with data. As we will see below for models with scalar or pseudoscalar exchanges, this
requirement can also be satisfied for a vanishing Sµ+µ− .

If both LH and RH currents are present in NP contributions with symmetric cou-
plings to quarks, the LRS scheme, then NP contributions to Bs → µ+µ− vanish. Specif-
ically, in this case P = 1, and we from (6.42) and (6.43) that

Aµµ∆Γ = cos(φNP
s ), Sµµ = − sin(φNP

s ), (6.76)
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and a branching ratio observable given by

R =

[
1 + ys cos(φNP

s )

1 + ys

]
. (6.77)

In view of the smallness of φNP
s the results for the three observables are very close to the

SM values. This example shows that even if no departures from SM expectation will be
found in Bs → µ+µ−, this does not necessarily mean that there is no NP present. This
physics could then be seen in B → K∗µ+µ− and B → Kµ+µ− and b→ sνν̄ transitions
as demonstrated in Ref. [204].

In the ALRS scheme NP contributions to Bs → µ+µ− enter again with full power.
Therefore the three observables in (6.4) offer, as in the LHS and RHS schemes, a good
test of NP. In fact, as found in Ref. [204], after the ∆B = 2 constraints are taken
into account, the pattern of NP contributions is similar to LHS scheme except that the
effects are smaller. This is because the relevant couplings have to be smaller in the
presence of LR operators in ∆B = 2 in order to agree with the data on ∆Ms.

6.4.3 (Pseudo)Scalar exchange

6.4.3.1 Basic formulae

We will next consider tree-level pseudoscalar or scalar exchanges that one encounters
in various models either at the fundamental level or in an effective theory. It could in
principle be the SM Higgs boson, but as the recent analysis in Ref. [189] shows, once the
constraints from ∆F = 2 processes are taken into account, NP effects in Bs → µ+µ− via
a tree-level SM Higgs exchange are at most 8% of the usual SM contribution and thus
hardly measurable. The SM Higgs coupling to muons is simply too small. Therefore,
what we have in mind here is a new heavy scalar or pseudoscalar boson encountered
in 2HDM or supersymmetric models. Yet, in this subsection we will make the working
assumption that either a neutral scalar or pseudoscalar tree-level exchange dominates
NP contributions. A general analysis of FCNC processes within such scenarios has been
recently presented in Ref. [189], with a focus on correlation between the observables
given in (6.4) with the Bs mixing phase φs. Here we will complement this study by
computing the correlations among R, Aµµ∆Γ, and Sµµ.

The flavour violating couplings of H are given in (6.57). Muon couplings ∆µµ̄
L,R(H)

are defined in a similar way. Due to the relation between left and right handed scalar
couplings given in (6.58), only ∆sb

R (H) and ∆sb
L (H) are non-vanishing in the LHS and

RHS schemes, respectively. The relevant non-vanishing Wilson coefficients are then
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given as follows

mb(MH) sin2 θWCS =
1

g2
SM

1

M2
H

∆sb
R (H)∆µµ̄

S (H)

V ∗tsVtb
, (6.78)

mb(MH) sin2 θWC
′
S =

1

g2
SM

1

M2
H

∆sb
L (H)∆µµ̄

S (H)

V ∗tsVtb
, (6.79)

mb(MH) sin2 θWCP =
1

g2
SM

1

M2
H

∆sb
R (H)∆µµ̄

P (H)

V ∗tsVtb
, (6.80)

mb(MH) sin2 θWC
′
P =

1

g2
SM

1

M2
H

∆sb
L (H)∆µµ̄

P (H)

V ∗tsVtb
, (6.81)

where we have introduced

∆µµ̄
S (H) = ∆µµ̄

R (H) + ∆µµ̄
L (H),

∆µµ̄
P (H) = ∆µµ̄

R (H)−∆µµ̄
L (H).

(6.82)

Note that mb has to be evaluated at µ = MH .

From the hermiticity of the relevant Hamiltonian one can show that ∆µµ̄
S (H) is real

and ∆µµ̄
P (H) purely imaginary. For convenience we define

∆µµ̄
P (H) ≡ i∆̃µµ̄

P (H), (6.83)

so that ∆̃µµ̄
P (H) is real. Scenario A can be realised by setting ∆µµ̄

S (H) = 0. Similarly,
Scenario B follows from setting ∆µµ̄

P (H) = 0. The case of a mixed scalar and pseu-
doscalar combination will be addressed in Section 6.4.4, which more naturally give the
intended usage cases of Scenarios C and D.

6.4.3.2 Numerical analysis

Analogous to the case of tree-level Z ′ exchanges, we will use the general Bs mixing
formalism discussed in Section 6.4.1 and the conditions in (6.69) to constrain the quark-
scalar couplings in the schemes LHS, RHS, LRS and ALRS. The first step is to set
values for the scalar and pseudoscalar muon couplings. For a single scalar particle H0,
the parameter |S| driving NP (Scenario B) is directly proportional to the muon coupling
|∆µµ

S (H0)|. However, for a single pseudoscalar particle A0, the muon coupling ∆µµ
P (A0)

is not directly proportional to P , and the resulting NP observables thereby have a more
involved dependence on it. In Figure 6.10 we show the dependence of the observables
R (left panel) and Aµµ∆Γ (right panel) with respect to muon coupling ∆̃µµ

P (A0) defined
in (6.83) satisfying the Bs mixing constraints for the LHS case. We observe that the
parameter space of the NP physics observables is very dependent on whether we pick
a large or small coupling, and that a fixed coupling cannot do it justice. We further
observe that the oases become indistinguishable if the sign of the coupling is not fixed.
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Figure 6.10: The dependence of the observables R (left) and Aµµ∆Γ (right) on the pseu-
doscalar lepton coupling ∆̃µµ̄

P (H) satisfying the Bs mixing constraints in the LHS case.
For a pseudoscalar with mass MA0 = 1 TeV.

In order to compare the oases behaviour of the scalar and pseudoscalar we begin by
fixing the muon couplings to

∆µµ̄
S (H0) = 0.024, ∆µµ̄

P (A0) = i 0.012, (6.84)

and ∆µµ̄
P (H0) = ∆µµ̄

S (A0) = 0. These values are consistent with the allowed range for
BR(Bs → µ+µ−) when the constraints on the quark couplings from B0

s − B̄0
s are taken

into account and M = 1 TeV. The reason the scalar couplings are chosen to be larger
than the pseudoscalar ones is because scalars do not interfere with SM contributions
and thereby more weakly constrained. The constraints from b → s`+`− transitions do
not have any impact in the (pseudo) scalar case, as shown in Ref. [189].

In Figure 6.11 we show the correlations of Sµµ versus R satisfying Bs mixing con-
straints for a single tree-level scalar (left) and pseudoscalar (right) exchange in the LHS
scheme. For the scalar case the blue and red oases overlap. The red oases in the
pseudoscalar case corresponds to R < 1 and is therefore clearly distinguishable from
the scalar case, where R > 1 for both oases. In Section 6.4.3.3 we will compare these
correlation with Z ′ exchange.

As we stated earlier, fixing the pseudoscalar muon couplings to one value does not
reveal the full structure of the NP parameter space. We therefore now consider the
muon couplings varied over the following range:

|∆µµ̄
S (H0)|, |∆µµ̄

P (A0)| ∈ [0.012, 0.024]. (6.85)

From here on we will ignore the sign of the lepton couplings, but again note that this
degeneracy can be resolved in the pseudoscalar case if the blue or red oasis from the
Bs mixing constraints can be singled out. We thus also stop distinguishing between the
two oases.
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Figure 6.11: Sµµ versus R for for LHS scheme with a scalar (left) and pseudoscalar
(right) for MH0 = MA0 = 1 TeV. Gray region: exp 1σ range for R.

In Figure 6.12, R is plotted against Aµµ∆Γ (left panel) and Sµµ (right panel) with
the regions allowed by the Bs mixing constraints overlayed for the various specific tree-
level models discussed in this section. The scalar and pseudoscalar muon couplings
have been varied as just discussed, and also the Z ′ muon couplings have been varied:
∆µµ
A (Z ′) ∈ [0.3, 0.7]. These three models are shown for the LHS scheme. For the Z ′

model the allowed region has also been constrained by a 2σ CL combined fit of the
Wilson coefficient C10 from b → sl+l− transitions [215]. For the scalar (H0) case the
branching ratio observable R can only be enhanced as there is no interference with the
SM contribution. On the other hand, for the pseudoscalar (A0) case it can be suppressed
or enhanced depending on which parameter oasis is chosen. The values of Aµµ∆Γ are seen
to be positive for both H0 and A0 and for R within one σ experimental value close to
unity. Sµµ can reach ±0.50 in both cases.

We have not shown the corresponding results in the RHS scheme because, similar
to the gauge boson case, the correlations in question have an identical structure. In
the scalar case the two correlations are exactly equal, whereas in the pseudoscalar case
the oases should be interchanged for the RHS scheme. In the LRS case, as expected,
NP effects are very small as scalar and pseudoscalar contributions are absent and (6.76)
applies.

6.4.3.3 Comparison with a gauge boson exchange

It is worthwhile to also include the exchange of a gauge boson, as presented in Sec-
tion 6.4.2, to our discussion of how the Bs → µ+µ− observables allow us to distinguish
between different models. Indeed in the left panel of Figure 6.8 we see that the corre-
lation between Sµµ and R has a very different structure from the case of pseudoscalar
or scalar exchanges shown in Figure 6.11. In the right panel of Figure 6.12 an overlay
of these regions is shown for LHS schemes, with the lepton couplings varied as given



156 CHAPTER 6. DECAY-TIME PROFILE OF A RARE DECAY

0.5 1.0 1.5 2.0
R̄ ≡ BR(Bs→ µ+µ−)/BRSM(Bs→ µ+µ−)

−1.0

−0.5

0.0

0.5

1.0

A
µ
µ

∆
Γ

SM

H0 (LHS)

A0 (LHS)

Z ′ (LHS)

H0 + A0 (MFV)

R̄ = 0.79+0.20
−0.20

0.5 1.0 1.5 2.0
R̄ ≡ BR(Bs→ µ+µ−)/BRSM(Bs→ µ+µ−)

−1.0

−0.5

0.0

0.5

1.0

S µ
µ

SM

H0 (LHS)

A0 (LHS)

Z ′ (LHS)

H0 + A0 (MFV)

R̄ = 0.79+0.20
−0.20

Figure 6.12: Overlay of the correlations for R versus Aµµ∆Γ (left) and Sµµ (right) for
the various specific models considered. The lepton couplings are varied in the ranges
|∆µµ

S,P (H)| ∈ [0.012, 0.024] and ∆µµ
A (Z ′) ∈ [0.3, 0.7]. All particles are taken to have a

mass of 1 TeV.

in (6.85). Similarly, in the left panel of Figure 6.12 we show the correlation between
Aµµ∆Γ and R, where strong contrasts between the allowed regions also emerge. The dif-
ference between the gauge boson and pseudoscalar exchange is interesting because both
particles generate Scenario A.

The difference in phenomenology of the A0 and Z ′ models in question can be traced
back to a difference in phase for the NP correction P̃ , which was defined in (6.44). As we
have defined the couplings ∆bs

L (A0, Z ′) in the same way for both models, the difference
enters through the muon couplings, which are imaginary in the case of the A0 but real
for the Z ′. Specifically, by defining

P̃ (Z ′) = rZ′e
iδZ′ , P̃ (A0) = rA0eiδA0 (6.86)

we find that
rZ′ ≈ rA0 , δA0 = δZ′ −

π

2
. (6.87)

The Bs mixing constraints we have taken force δZ′ to be in the ballpark of 90◦ and 270◦

for the blue and red oasis, respectively [204, 189]. This results in positive and negative
value of Sµµ for the blue and red oasis, respectively, as shown in Figure 6.8. Concerning
R, where NP is governed by cos δZ′ , we find that it can be enhanced or suppressed in
each oasis. On the other hand, (6.87) implies that the phase δA0 is in the ballpark of
0◦ and 1800 for the blue and red oasis, respectively. Therefore the asymmetry Sµµ can
vanish in both oases, while this was not possible in the Z ′ case. As NP in R is governed
by cos δA0 , this enhances and suppresses R for blue and red oasis, respectively as clearly
seen in Figure 6.11. In particular, R differs from its SM value, while this is not the case
in the Z ′ scenario.

What is particularly interesting is that these differences are directly related to the
difference in the fundamental properties of the particles involved: their spin and CP-
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parity. As far as the last property is concerned, also differences between the implications
of the pseudoscalar and scalar exchanges have been identified as discussed in detail
above. They are related to the fact that the scalar contribution, being CP-even, cannot
interfere with the SM contribution.

6.4.4 Scalar and pseudoscalar exchange

6.4.4.1 Basic formulae

In this model we assume the presence of a scalar H0 and pseudoscalar A0 with equal (or
nearly degenerate) mass MH . This is, for example, effectively realised in 2HDMs in a
decoupling regime, where H0 and A0 are much heavier than the SM Higgs h0 and almost
degenerate in mass (see Appendix A). We will show that under specific assumptions
this setup can reproduce Scenarios C or D.

The couplings of the scalar and pseudoscalar to quarks are given in general by the
following flavour-violating Lagrangian:

LFCNC(H0, A0) =
[
∆sb
L (H0)(s̄PLb) + ∆sb

R (H0)(s̄PRb)
]
H0

+
[
∆sb
L (A0)(s̄PLb) + ∆sb

R (A0)(s̄PRb)
]
A0. (6.88)

We will assume that the scalar and pseudoscalar couple with equal strength to quarks:

L 3 D̄L∆̃DR(H0 + iA0) + h.c, (6.89)

where D = (d, s, b) and ∆̃ is a matrix in flavour space. Then

∆sb
R (H0) = ∆̃sb, ∆sb

L (H0) =
[
∆̃bs
]∗
,

∆sb
R (A0) = i∆̃sb, ∆sb

L (A0) = −i
[
∆̃bs
]∗
. (6.90)

where in general ∆̃sb, ∆̃bs ∈ C.

Scenario C:

To reproduce this scenario we set the pseudoscalar and scalar masses to be exactly equal:
MH0 = MA0 = MH . Further relating the lepton couplings by a single real parameter
∆̃µµ̄:

∆µµ̄(H0) = ∆̃µµ̄, ∆µµ̄(A0) = i ∆̃µµ̄ (6.91)

and inserting the lepton and quark couplings into formulae (6.78)–(6.81) we find:

CS = −CP =
1

g2
SM M2

H mb sin2 θW

∆̃sb∆̃µµ

V ∗tsVtb
(6.92)

C ′S = C ′P =
1

g2
SM M2

H mb sin2 θW

[
∆̃bs
]∗

∆̃µµ

V ∗tsVtb
. (6.93)
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This simple model satisfies the relations in (6.52) and thereby belongs to Scenario C.
These relations are in fact valid for all the quark coupling schemes: LHS, RHS, LRS and
ALRS. However, the physics implications depend on the scheme considered: In the LHS
and RHS schemes NP contributions to B0

s–B̄
0
s mixing from scalar and pseudoscalar with

the same mass cancel each other, therefore there is no constraint from B0
s–B̄

0
s mixing.

In this case NP effects in Bs → µ+µ− can only be constrained by the decay itself or
other b → s`+`− transitions. In LRS and ALRS schemes non-vanishing contributions
from LR operators to B0

s–B̄
0
s mixing are present. Moreover we find

CS = C ′S, CP = −C ′P (LRS), (6.94)

CS = −C ′S, CP = C ′P (ALRS). (6.95)

Therefore in the LRS case only pseudoscalar contributes to Bs → µ+µ− (Scenario A),
while in the ALRS case only scalar contributes (Scenario B).

We conclude therefore that in order to have an example of Scenario C that differs
from Scenario A and B and moreover in which NP contributions to B0

s–B̄
0
s mixing are

present, we need both L and R couplings that are not equal to each other or do not
differ only by a sign.

An option to reproduce Scenario C with non-trivial constraints from mixing is given
by Minimal Flavour Violation (MFV). In the MFV formalism (see Appendix A) ∆̃ is
constructed out of the spurion matrices YU and YD [209]. In principle the following
constructions can contribute to the b → s FCNCs at leading order in the off-diagonal
structure:

YUY
†
U YD, YDY

†
D YUY

†
U YD, YUY

†
U YDY

†
D YD. (6.96)

However, the last two will in general receive dynamical (loop) suppressions. Thus, for
simplicity, we assume the first construction to be dominant. In the notation of Ref. [210],
where MFV is discussed in the context of a general 2HDM with flavour blind phases
(2HDMMFV), this is equivalent to assuming |a0| � |a1|, |a2|. As a result we find

∆̃sb = ε yb y
2
t V
∗
tsVtb,

[
∆̃bs
]∗

= ε∗ ys y
2
t V
∗
tsVtb =

ms

mb

ε∗

ε
∆̃sb. (6.97)

Thus under the above assumptions all of the quark couplings in (6.88) can be expressed
in terms of a single NP parameter ε3.

The parameter ε is real in pure MFV but may be complex in 2HDMMFV [210].
Inserting relation (6.97) into (6.93) we find

C ′S =
ms

mb

ε∗

ε
CS C ′P = −ms

mb

ε∗

ε
CP , (6.98)

and observe a ms/mb suppression of the primed operators. In pure MFV, where ε is

real, the parameters C
(′)
S,P are also all real.

3 It should be emphasized that in general this is not the case for 2HDMMFV [210, 216]. See additional
comments below.
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Scenario D:

In Scenario D the parameters P and S are arbitrary but do not carry new CP-violating
phases. The pure MFV model with a scalar and pseudoscalar that we just discussed
is therefore a natural candidate. However, because this model was defined to satisfy
Scenario C, as it stands we have P ±S = 1. If we continue to insist that the scalar and
pseudoscalar should couple with equal strengths and phases to quarks as in (6.89), then
there are two choices for making P and S arbitrary.

One choice is to allow different couplings to leptons for the scalar and pseudoscalar
i.e. |∆µµ̄(H0)| 6= |∆µµ̄(A0)|. In this case the constraints from Bs mixing (discussed
below) do not change, and only the current bounds on R must be satisfied.

Alternatively, a non-trivial difference between the scalar mass MH0 and the pseu-
doscalar mass MA0 can be introduced. In this case the lepton couplings can remain
equal as defined in (6.91). The catch, however, is that now the LL and (to a much lesser
extent in MFV) RR contributions to Bs mixing no longer vanish. Thus the allowed
mass difference, and thereby the arbitrariness of P and S is constrained by mixing.

6.4.4.2 Numerical analysis

Our numerical analysis for this model will focus on the above mentioned assumptions
that produce Scenario C. Specifically, we begin by assuming an exactly degenerate scalar
mass MH , equal scalar and pseudoscalar lepton couplings and MFV. At the end of this
section we also briefly address the consequences of a scalar–pseudoscalar mass difference,
which could produce Scenarios D.

By imposing MFV on the flavour matrix ∆̃ introduced in (6.89), it follows that the
analogues of ∆̃sb in the Bd and K systems are related to it by

∆̃db = −V
∗
td

V ∗ts
∆̃sb, ∆̃ds = −ms

mb

V ∗td
V ∗tb

[
∆̃sb
]∗
. (6.99)

Therefore the value taken by ∆̃sb should in principle not only satisfy the experimental
Bs mixing constraints, but also those of the Bd and K systems. In practice, however, NP
contributions in this model to Bd mixing are suppressed by a factor of md/ms relative to
Bs mixing and thereby very small. As a result, this model with MFV cannot relieve the
current tensions in Bd mixing between theory and experiment [217, 218]. Contributions
to neutral Kaon mixing are totally negligible. We therefore proceed to only consider
constraints from Bs mixing.

The only contribution that survives in Bs mixing is the LR one and this introduces
the following shift in S(Bs) (defined in (6.61)):

[∆S(Bs)]LR = 2 rLR
[∆̃sb]∗∆̃bs

M2
H (VtsV ∗tb)

2 = 2 rLRH

(
ms

mb

) |ε|2 y2
b y

4
t

M2
H

. (6.100)
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Figure 6.13: Overlay of the correlations for R versus Aµµ∆Γ (left) and Sµµ (right) for
the various specific models considered. The lepton couplings are varied in the ranges
|∆µµ

S,P (H)| ∈ [0.00, 0.035] and ∆µµ
A (Z ′) ∈ [0.0, 1.0]. All particles are taken to have a mass

of 1 TeV.

with rLRH given in Table 6.3. Although new flavour blind phases are possible in the MFV
scenario, wee see that they do not show up in Bs mixing. Therefore the Bs mixing phase
φs remains at its SM value, and is thereby consistent with experiment. In Ref. [210]
the ∆B = 2 operator for a 2HDM with MFV is also found to leave flavour-blind phases
unconstrained in the limit |a0| � |a1|, |a2|. In general this is not the case for 2HDMMFV

and, as analysed in Refs. [210, 216], φs can receive NP contributions. Contrary to
the mixing phase, ∆Ms does receive a small negative contribution, which is suppressed
by ms/mb. This suppression due to LR operators within a MFV framework was first
pointed out for the MSSM with MFV in Ref. [208]. As we will soon see, the fact that
the flavour-blind phases are unconstrained by Bs mixing allows for significant effects in
Bs → µ+µ− observables.

For both MFV and MFV we find the range:

|∆̃sb| ∈ [0.00196, 0.00530], (6.101)

for MH = 1 TeV, which, as seen in (6.97), is consistent with the implicit assumption that
ε should be small. To proceed with numerics for the Bs → µ+µ− observables we must set
the coupling of H0 and A0 to muons. For Scenario C this means setting ∆̃µµ as defined
in (6.91). In order to compare with the single tree-level scalar and pseudoscalar models
discussed in the previous section we begin by varying the coupling between [0.012, 0.024]
as also done in (6.85).

The left panel of Figure 6.12 showsAµµ∆Γ plotted versus R for MFV with MH = 1 TeV.
The allowed region from Bs mixing constraints shown in this plot should be compared
with the theoretical situation sketched for Scenario C in the left panel of Figure 6.5.
By inspection of the theoretical plot one observes that the pure MFV model (with no
flavour blind phases) corresponds to the outer border of the MFV region shown. It is
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Figure 6.14: The allowed region of Aµµ∆Γ versus the heavy scalar mass MH in MFV (left
panel) and MFV (right panel). The allowed region satisfies the Bs mixing constraints
and falls with the 2σ C.L region of R: R ∈ [0.30, 1.80].

interesting to observe that in both models a negative Aµµ∆Γ is possible within the Bs

constraints mixing, in contrast to the tree-level models considered above with a single
(pseudo)scalar or gauge boson. Because the flavour-blind phase in MFV is completely
unconstrained, almost the entire experimentally allowed region is left unconstrained by
Bs mixing in this model.

In the right panel of Figure 6.12 we similarly show Sµµ versus R in the MFV model
for MH = 1 TeV. In the pure MFV model Sµµ = 0 and therefore these plots are not
interesting.

In a 2HDM with large tan β, which can generate a decoupled heavy scalar and
pseudoscalar as discussed here, the muon coupling is given by

∆̃µµ = −2

(√
2mµ

v
tan β

)
= −0.03

[
tan β

25

]
, (6.102)

which demonstrates that the (pseudo)scalar muon couplings can be larger than what we
have assumed so far. In Figure 6.13 we repeat the plots we have shown in Figure 6.12,
but now with the muon couplings varied over much larger ranges:

|∆µµ̄
S,P (H0, A0)| ∈ [0.00, 0.035], |∆µµ̄

A (Z ′)| ∈ [0.0, 1.0]. (6.103)

This range of couplings gives a better impression of the full allowed parameter space, at
the cost of hiding some of the characteristic differences between the considered models.
We do not again show the large allowed region of H0 +A0 model with MFV, but we do
show it with pure MFV in the Aµµ∆Γ versus R case (left panel).

In Figure 6.14 we show the allowed range of Aµµ∆Γ with respect to the heavy scalar
mass MH in the MFV (left panel) and MFV (right panel). In these plots we have fixed
the muon couplings to ∆̃µµ̄ = −0.03. The allowed range takes the Bs mixing constraints
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into account and falls within the 2σ C.L of R as defined in (6.39). We observe that
for MH ≤ 0.75 TeV negative values of Aµµ∆Γ are predicted in this scenario, while for
MH ≥ 2.5 TeV its SM value is approached.

Let us now briefly consider a mass difference between the scalar and pseudoscalar:

MH0 6= MA0 . (6.104)

A small mass difference is still consistent with a 2HDM in a decoupling regime, and will
still approximately reproduce Scenario C. In the presence of a non-zero mass difference
the following contribution to the general SM box (see (6.61)) in MFV or a LHS model
no longer vanishes:

[∆S(Bs)]LL =

(
[∆̃sb]∗

VtsV ∗tb

)2 [
rLLH (MH0)

M2
H0

− rLLH (MA0)

M2
A0

]
(6.105)

and an analogous expression for a RHS model after the replacement [∆̃sb]∗ → ∆̃bs and
L with R. In MFV we therefore find:

[∆S(Bs)]LL =

(
mb

ms

)2

([∆S(Bs)]RR)∗ = (ε∗)2 y2
b y

4
t

[
rLLH (MH0)

M2
H0

− rLLH (MA0)

M2
A0

]
. (6.106)

We observe that the LL contribution does not suffer from ms/mb suppression, although
it is suppressed relative to the LR contribution due to a smaller hadronic matrix ele-
ment (Table 6.2 gives |rLR| ≈ 6|rLL|) and the splitting between scalar and pseudoscalar
masses. Thus whether the SLL contribution or LR dominates depends sensitively on
the size of the mass splitting in question. The SRR contribution on the other hand is
negligible. Furthermore, the SLL contribution now in principle contains a new flavour-
blind phase in ε allowing for new CP-violating effects in Bs mixing. The expressions in
(6.100) and (6.106) are also valid in a non-MFV framework in which new flavour and
CP-violating phases are present in ε.

Finally, it is interesting to consider the possibility that the interference between the
SM and the pseudoscalar is such that P vanishes in this model. Because the scalar and
pseudoscalar couple in the same way to quarks (see (6.89)), there would be no new CP-
violating phases in the decay. However, the NP mixing phase φNPs can still contribute
(unless we assume MFV), and we find for P = 0 the time-dependent observables:

Aµµ∆Γ = − cos(φNP
s ), Sµµ = sin(φNP

s ). (6.107)

This change in sign for these observables with respect to the SM is a smoking gun signal
of scalars dominating in the Bs → µ+µ− decay.

6.5 Conclusions

The most immediately relevant result presented in this chapter is the correction of the
Standard Model prediction for theBs → µ+µ− branching ratio due to theBs decay width
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difference. Namely, we discussed how in the Standard Model the decay Bs → µ+µ− only
receives contributions from the heavy mass-eigenstate, which results in a maximal mass-
eigenstate rate asymmetry and therefore a maximal correction of ∼ 8%. A correction of
this size is particularly important because the Bs → µ+µ− branching ratio has recently
been measured by the LHCb and CMS experiments, and found to lie in the ballpark of
the Standard Model prediction.

Aside from addressing the branching ratio correction, we have also performed a
detailed phenomenological analysis of the decay-time profile of the Bs → µ+µ− decay.
Early on in such a time-dependent analysis, when flavour tagging is not experimentally
feasible, the mass-eigenstate rate asymmetry Aµµ∆Γ can be extracted from an effective
lifetime measurement. Once flavour tagging is included, also the observable Sµµ becomes
available. These two observables complement the branching ratio measurement of this
decay, and combinations of the three allow various scenarios of New Physics to be
disentangled. Specifically, the presence of new scalar, pseudoscalar or gauge boson
particles can potentially be identified, which is not possible on the basis of the branching
ratio alone.

The effect of New Physics on the three observables we consider can be described by
two the complex parameters S and P , representing amplitudes with a scalar or pseu-
doscalar lepton density, respectively. These two parameters can in turn be described by
the fundamental parameters of a given model. Under plausible model specific assump-
tions, which we refer to as phenomenological scenarios, combinations of the considered
observables allow us to determine S and P , and thereby probe New Physics, in a theoret-
ically clean way. To illustrate the usefulness of this approach, we have grouped several
popular extensions of the SM into these phenomenological scenarios (see Table 6.1).

We have further presented numerical analyses for the observables in question for
models with tree-level contributions to Bs → µ+µ− mediated by heavy gauge bosons,
scalars, pseudoscalars and a combination of scalars with pseudoscalars. This analysis
takes existing experimental constraints from Bs mixing and b → s`+`− processes into
account. The plots in Figures 6.12 and 6.13 illustrate our general findings. We essentially
found that each of the four models considered has a qualitatively different behaviour in
“observable” space. In particular, for models with a single new particle with a mass of
1 TeV, be it a gauge boson, scalar or pseudoscalar, negative values of Aµµ∆Γ require large
couplings to muons and a significant deviation of the Bs mixing phase φs from its SM
value. On the contrary, a negative value of Aµµ∆Γ can naturally be explained in models
with both a scalar and pseudoscalar and a common mass MH ≤ 1.5 TeV. Furthermore,
in this setup a deviation of φs from its SM value is not required, and the branching
ratio has a lower bound. An example of such a model is a decoupled two-Higgs doublet
model.
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Chapter 7

Summary and outlook

In this thesis we have developed strategies to hunt for New Physics using Bs meson
decays, which are a particularly promising hunting ground due to the LHCb, CMS and
ATLAS detectors at CERN that began operating in early 2010. Our strategies are based
on what is called a bottom up approach. Specifically, we have in general taken a model
independent parameterization for the phenomena of interest with the aim of potentially
observing deviations in these parameters from their Standard Model predictions. This is
in contrast to a top down approach where one assumes a specific model of New Physics,
which usually follows from the introduction of some well motivated new symmetry of
Nature.

The first run of the LHC is now complete, and the data collected has not revealed
any obvious signals of New Physics. Fortunately, the second run, due to start in 2015,
promises to deliver an order of magnitude more data. This should translate into a
significant increase in precision, with which we can hunt for less obvious New Physics
effects. However, in order to identify the presense or absense of such small effects,
more precise Standard Model predictions will be necessary. Therefore a key focus of
the strategies that we have developed throughout this thesis has been to control the
theoretical uncertainties present in the parameters to be probed by experiment. To
this end we have primarily made use of the flavour symmetries of strong interactions to
relate the hadronic matrix elements that appear in the Bs decay amplitudes to those
appearing in their so-called control channels.

As we stated in the introduction, it will be important to overconstrain our parameters
of interest using several different analysis strategies. Throughout this thesis we have
focused in particular on strategies that utilise the mass-eigenstate rate asymmetry of a
Bs decay mode. This asymmetry is available in the Bs system due to the difference in
lifetimes of its mass-eigenstates, and can be extracted from an untagged time-dependent
analysis. As such, it does not depend on the experimental tagging efficiency, and is
available much sooner than the CP asymmetries that do rely on flavour tagging. The
observable sensitive to this asymmetry that is usually quoted by experiments is the
effective lifetime of a Bs decay mode. We have found that effective lifetimes can be a
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sensitive probe of New Physics in several different contexts. Furthermore, they contain
the missing information necessary to convert between the experimental and theoretical
definitions of a Bs branching ratio.

One of the parameters whose consistency we sought to check with the Standard
Model is the angle γ of the unitarity triangle. We discussed strategies for extracting
this angle from two different Bs decay modes. One mode, Bs → D

(∗)
s K, involves only

tree-level topologies. The other, Bs → K+K−, is driven by QCD penguin topologies.
In order to control the hadronic uncertainties in the latter mode and extract mean-
ingful physics, it is necessary to relate it using U -spin flavour symmetry to the mode
Bd → π+π−. The former mode is theoretically clean, however we still made use of
its U -spin relation to Bd → D(∗)K to provide early Standard Model predictions. The
LHCb experiment has already published early results for the CP violating observables
of both decays. However, the associated errors are still too large to perform the optimal
determinations of γ. Over the lifetime of the LHCb experiment these determinations
will become possible. It will be interesting to eventually be able to compare the value
of γ extracted from tree and penguin topologies. If a disagreement is found it could be
an indication of New Physics entering the penguin loop processes.

Another parameter we sought to overconstrain is the B0
s–B

0

s mixing phase φs. We
proposed alternative determinations of this phase that complement the conventional
tagged time-dependent angular analysis of the decay mode Bs → J/ψφ. In particular,
we considered decay modes of the form Bs → J/ψss̄ where the ss̄ state was taken to have
zero spin in order to avoid an angular analysis. Taking the f0(980) as the ss̄ state gives a
promising final state for the LHCb experiment, but it introduces additional theoretical
uncertainties stemming from the still unknown hadronic composition of this particle.
Observing the U -spin related decay mode Bd → J/ψf0(980) would help a lot in solving
this mystery and controlling these effects. The composition of the η(′) isospin singlets is
more certain, however their relative ratio of ss̄ is not yet known precisely. We discussed
how the branching ratio measurements of the modes Bs → J/ψη(′) together with their
U -spin related pairs Bd → J/ψη(′) can be used to accurately determine these mixing
angles. Unfortunately, the η(′) are difficult to detect at hadron collider experiments such
as LHCb, and therefore the Bs,d → J/ψη(′) decay modes are more suitable for future
e+e− experiments such as Belle-II.

Aside from avoiding an angular analysis, we also explored how we may avoid the
flavour tagging present in the conventional determination of the phase φs. To that
end we proposed a strategy involving the effective lifetime measurements for a pair
of final states where one is CP-even and the other CP-odd. Specifically, we took the
pair of decay modes Bs → K+K− and Bs → J/ψf0(980), respectively. These effective
lifetime measurements can be converted into contours in the φs–ys plane, with their
intersections pinpointing the possible solutions. For a small mixing phase this untagged
analysis is not as sensitive as a tagged analysis. However, it still provides a useful cross-
check, being sensitive to different experimental systematics and theoretical uncertainties.
Furthermore, these theoretical uncertainties are quite robust in this case. It will be
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interesting to watch this picture develop as the effective lifetime errors improve from
their current 3% uncertainty to below 1%, and additional effective lifetimes such as
Bs → D+

s D
−
s and Bs → J/ψKS are also precisely measured.

A highlight of this thesis was our discussion of the famous rare decay Bs → µ+µ−,
the branching ratio of which is very sensitive to New Physics. In particular, we pointed
out that the theoretical prediction for its branching ratio requires an ∼ 8% correction,
due to Bs decay width difference, in order to be compared with experiment. Because
the first measurements of this branching ratio by the LHCb and CMS experiments have
found it to lie in the ballpark of the Standard Model, this correction is very relevant. We
also discussed how untagged time-dependent measurements of this decay could prove
useful in our hunt for New Physics. Specifically, an effective lifetime measurement offers
complementary information to the branching ratio in the form of the theoretically clean
mass-eigenstate rate asymmetry. Together these two observables have the potential
to discriminate between various models of New Physics, which we classified into vari-
ous phenomenological scenarios. Especially interesting are decoupled two-Higgs doublet
models, where the mass-eigenstate rate asymmetry can be maximally different to the
Standard Model but still compatible with all existing experimental bounds. A relative
precision of 1% for the effective lifetime would translate into an uncertainty of approxi-
mately 10% for the mass-eigenstate rate asymmetry. Although a complete study of the
experimental potential of this new observable is still pending, an early estimate is that
the LHCb experiment should achieve a precision of 5% or better for the 50 fb−1 of data
expected by the end of its lifetime [183].
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Appendix A

Decoupled two-Higgs doublet
models

In this appendix we consider two-Higgs doublet models (2HDMs) in the context of down-
type flavour changing neutral currents, and in particular the transition b→ s `+`−. We
will focus specifically on such models in the limit that all but the lightest physical scalar
particles effectively decouple. This limit has the advantage that it is easy to reconcile
with current direct bounds on scalar masses and, as we will show, leads to simpler
phenomenological properties.

Consider the two Higgs doublets

H1 =

(
H+

1

H0
1

)
, H2 =

(
H0

2

H−2

)
(A.1)

charged under SU(2)L×U(1)Y with hypercharges of 1/2 and −1/2, respectively. Their
most general renormalizable and gauge invariant scalar potential is given by [219]

V = µ2
1|H1|2 + µ2

2|H2|2 − (bHT
1 H

c
2 + h.c) +

λ1

2
|H1|4 +

λ2

2
|H2|4 + λ3|H1|2|H2|2

+ λ4|H1H2|2 +

[
λ5

2
(HT

1 H
c
2)2 − λ6|H1|2HT

1 H
c
2 − λ7|H2|2HT

1 H
c
2 + h.c

]
, (A.2)

where
Hc
i ≡ (−i)σ2H

∗
i . (A.3)

In principle the couplings b, λ5, λ6 and λ7 can all be complex. However, we can always
redefine the Higgs fields H1 and H2 so that the b coupling is real.

Upon electroweak symmetry breaking we require that the neutral components gain
a vacuum expectation value: 〈H0

1 〉 = v1/
√

2 and 〈H0
2 〉 = v2/

√
2 with v2 = v2

1 + v2
2 =

(
√

2GF )−1. A useful change of basis is then given by the rotation1

(
Φv

ΦH

)
=

(
cβ sβ
−sβ cβ

)(
H1

Hc
2

)
, (A.4)

1We will use the notation of Ref. [210] throughout this appendix.
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where cβ ≡ cos β = v1/v and sβ ≡ sin β = v2/v. In this basis only Φv contains a non-
zero vacuum expectation value, and the fields can be decomposed into neutral, charged
and goldstone bosons:

Φv =

(
G+

1√
2
(v + S1 + iG0)

)
, ΦH =

(
H+

1√
2
(S2 + iS3)

)
. (A.5)

The ratio of the vacuum expectation values is given by tβ ≡ tan β = v2/v1.

The neutral scalars S1, S2 and S3 pick up masses due to the spontaneous symmetry
breaking and can in principle be mixed. These mixed mass terms are given by their
quadratic couplings at the minimum of the potential. As the U(1)Q symmetry of quan-
tum electrodynamics remains unbroken, we may set the charged fields H±1 and H±2 in
the potential to zero at the minimum. The resulting neutral scalar potential is then

Vneutral = µ2
1|H0

1 |2 + µ2
2|H0

2 |2 − b(H0
1H

0
2 +H0∗

1 H
0∗
2 ) +

λ1

2
|H0

1 |4 +
λ2

2
|H0

2 |4

+ (λ3 + λ4)|H0
1 |2|H0

2 |2 +
λ5

2
(H0

1H
0
2 )2 +

λ∗5
2

(H0∗
1 H

0∗
2 )2

− λ6|H0
1 |2H0

1H
0
2 − λ∗6|H0

1 |2H0∗
1 H

0∗
2 − λ7|H0

2 |2H0
1H

0
2 − λ∗7|H0

2 |2H0∗
1 H

0∗
2 .
(A.6)

The critical points ∂Vneutral/∂H
0
1 = 0 and ∂Vneutral/∂H

0
2 = 0 give the minimisation

conditions

µ2
1 = b tβ −

v2

2

{
λ1 c

2
β + [λ3 + λ4 + Re(λ5)] s2

β − Re(λ6)3 cβ sβ − Re(λ7) tβ s
2
β

}
,

µ2
2 = b t−1

β −
v2

2

{
λ2 s

2
β + [λ3 + λ4 + Re(λ5)] c2

β − Re(λ6) t−1
β c2

β − Re(λ7)3 cβ sβ
}
, (A.7)

respectively. Substituting (A.7) into (A.6) and changing to the basis in (A.4), the neutral
scalars S3 couples to S1 and S2 as follows:

V 3 3

4
v2 [sin 2β Im(λ5)− cos 2β Im(λ6 − λ7)− Im(λ6 + λ7)]S1 S3

+
1

2
v2 [cos 2β Im(λ5) + sin 2β Im(λ6 − λ7)]S2 S3. (A.8)

Thus we observe that in general the neutral scalars S1, S2 and S3 all mix, and their
diagonalisation gives three mass-eigenstates that are not CP eigenstates. If the scalar
potential is CP invariant i.e. if Im(λ5,6,7) = 0, then the above couplings vanish and S3

will be a mass-eigenstate. In this case it will be a CP-odd pseusoscalar and is often
denoted by A0. The remaining scalars S1 and S2 are then CP-even, and in general mix
to give the two mass-eigenstates H0 and h0.
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The decoupling limit

Let us first consider the case that the scalar potential is CP invariant, so that all the
couplings are real. Then, after spontaneous symmetry breaking, the physical scalar
masses are given by [219]

M2
A =

b

sβcβ
− 1

2
v2(2λ5 − λ6 t

−1
β − λ7tβ), (A.9)

M2
H± = M2

A +
1

2
v2(λ5 − λ4), (A.10)

(
M2

H 0
0 M2

h

)
=

(
cα sα
−sα cα

)
M
(
cα −sα
sα cα

)
, (A.11)

with

M≡ M2
A

(
s2
β −sβcβ

−sβcβ c2
β

)

+ v2

(
λ1c

2
β + 2λ6sβcβ + λ5s

2
β (λ3 + λ4)sβcβ + λ6c

2
β + λ7s

2
β

(λ3 + λ4)sβcβ + λ6c
2
β + λ7s

2
β λ2s

2
β + 2λ7sβcβ + λ5c

2
β

)
. (A.12)

We observe that if M2
A � |λi|v2 for i ∈ {1, . . . , 7} the contribution of the v2 terms

to M is very small. Assuming |λi| . O(1), the condition to diagonalise (A.11) in this
limit is then

sin(α− β) cos(α− β)−O
(
v2

M2
A

)
= 0, (A.13)

and for MH > Mh (by definition) that sin2(α− β) > cos2(α− β), implying:

cos(α− β) = O
(
v2

M2
A

)
, (A.14)

Mh = O (v) , (A.15)

MH = MA +O
(
v2

MA

)
, (A.16)

MH± = MA +O
(
v2

MA

)
. (A.17)

This is the so-called decoupling regime. It is characterized by two separate mass scales:
the electroweak scale v and a second scale MA � v. If the particles of order MA

are integrated out, then we are left with a theory that closely resembles the one-Higgs-
doublet SM i.e the lighter neutral scalar h is indistinguishable from the SM Higgs boson.
Note that we can always choose the phases of the scalar Higgs doublets so that v1 and
v2 are positive, so that 0 ≤ β ≤ π/2. The decoupling limit then corresponds to:

α→ β − π/2. (A.18)
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By inspection of the pseudoscalar mass in (A.9), we see that one way to realise the
decoupling regime is to have tβ � 1 and b & λiv

2 for i ∈ {1, . . . , 7}. If λ7 < 0 we
additionally require that λ7tβ = O(λi) for i ∈ {1, . . . , 6}.

To consider the case of explicit CP violation in the scalar potential, we begin by
assuming that tβ � 1 and subsequently expand for small cβ [210]. In the basis given in
(A.4), we then find the following mixing matrix for the neutral scalars:

V 3 1

2




S1

S2

S3



T

MS




S1

S2

S3


 , (A.19)

MS =




v2 λ2 v2 Re(λ7) −3
2
v2 Im(λ7)

v2 Re(λ7) 1
cβ

[
b+ 1

2
v2 Re(λ7)

]
−1

2
v2 Im(λ5)

−3
2
v2 Im(λ7) −1

2
v2 Im(λ5) 1

cβ

[
b+ 1

2
v2 Re(λ7)

]
− v2 Re(λ5)




+ cβ



−4 v2 Re(λ7) v2 [λ2 − λ345] 3

2
v2 Im(λ5)

v2 [λ2 − λ345] 1
2
b− 1

4
v2 Re(6λ6 − 7λ7) v2 Im(λ6 − λ7)

3
2
v2 Im(λ5) v2 Im(λ6 − λ7) 1

2
b− 1

4
v2 Re(2λ6 − λ7)




+O
(
c2
β

)
, (A.20)

where λ345 ≡ λ3 + λ4 + Re(λ5). We observe that λ7 dominates the mixing of S1 in
the large tβ limit. Regardless, if we assume b & λiv

2, S1 effectively decouples from
S2 and S3 and becomes the lightest mass-eigenstate h0

1. We are then left with finding
the mass-eigenstates for the mixed system S2–S3, which we will denote by h0

2 and h0
3.

Diagonalising the 2× 2 submatrix gives:

V 3 1

2

(
S2

S3

)T
MS2,3

(
S2

S3

)
=

1

2

(
h0

2

h0
3

)T ( M2
h0

2
0

0 M2
h0

3

)(
h0

2

h0
3

)
, (A.21)

where

(
S2

S3

)
=

(
cχ sχ
−sχ cχ

)(
h0

2

h0
3

)
, (A.22)

and

χ =
θ5

2
+ cβ

( |λ6| sin(θ5 − θ6) + |λ7| sin(θ5 − θ7)

|λ5|

)
+O(c2

β) radians, (A.23)
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Here we have defined for convenience λi = |λi|eiθi . The corresponding masses are:

M2
h0

2
= b

{
1

cβ
+ cβ

}
+

1

2
v2

{
1

cβ
|λ7| cos θ7 + |λ5| (1− cos θ5)

}

− cβ
1

2
v2

{
|λ6| [cos θ6 + 2 cos(θ5 − θ6)]− |λ7|

[
3

2
cos θ7 + 2 cos(θ5 − θ7)

]}
,

(A.24)

M2
h0

3
= b

{
1

cβ
+ cβ

}
+

1

2
v2

{
1

cβ
|λ7| cos θ7 − |λ5| (1 + cos θ5)

}

− cβ
1

2
v2

{
|λ6| [cos θ6 − 2 cos(θ5 − θ6)]− |λ7|

[
3

2
cos θ7 − 2 cos(θ5 − θ7)

]}
.

(A.25)

Observe that in the large tβ decoupling regime Mh0
2
≈Mh0

3
. In the CP conserving limit

Im(λ5,6,7)→ 0 we recover χ→ 0.

Scalar mediated b→ s`+`− transitions

The most general quark Yukawa-term Lagrangian in a general 2HDM is [219]

−Lgen
Y,q = Q̄LXd1DRH1 + Q̄LXd2DRH

c
2 + Q̄LXu1URH

c
1 + Q̄LXu2URH2 + h.c, (A.26)

with Hc
i defined in (A.3). The presence of a symmetry under which only DR and

H1 transform, such as U(1)PQ Peccei-Quinn symmetry or a discrete alternative, will
forbid the couplings Xd2 and Xu1 at tree level. However, loop processes due to U(1)PQ

breaking terms, or from elsewhere, can reintroduce these couplings. Such breaking
terms are necessarily present in the scalar potential, because without them the physical
pseudoscalar A0 would be massless. So even if such symmetries are present, (A.26) can
be interpreted as an effective Lagrangian.

To emphasise the origin of the FCNCs, we change to the Higgs doublet basis given
in (A.4). In this basis we have the following down-type quark couplings

−Lgen
Y,d = D̄L

[√
2

v
MdΦ

0
v + ZdΦ

0
H

]
DR + h.c, (A.27)

where

Md =
1√
2

(v1Xd1 + v2Xd2) , Zd = cβXd2 − sβXd1. (A.28)

The main point is that for general matrices in flavour space Xd1 and Xd2, it is not
possible to simultaneously diagonalise the mass matrix Md and the coupling matrix Zd
by redefining the down-type quark fields D. The residual off-diagonal terms in Zd after
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diagonalisation of Md lead to FCNCs. We will consider only the FCNCs for down-type
quarks:

−Leff
FCNC,d =

1√
2
D̄LZdDR [S2 + i S3] + h.c

=
1√
2
D̄LZdDR

[
(cχ − isχ)h0

2 + (sχ + icχ)h0
3

]
+ h.c. (A.29)

where in the second line we have changed to the physical basis in the large tβ decoupling
regime.

We will assume that the dominant contribution to the b→ s l+l− transition is from an
S-channel neutral Higgs boson. That is, we neglect box and self-energy diagrams as well
as the SM contributions. This approximation of dropping box diagrams is often made
in the literature to simplify the tβ discussion. For example: in supersymmetric [208]
and non-supersymmetric [207] 2HDMs2.

For the couplings of the neutral Higgs bosons to leptons we assume a flavour diagonal
structure and no CP violation. These assumptions give the following leptonic couplings
to the neutral scalar Higgs bosons:

−LY,l = L̄L diag(ye, yµ, yτ )ERH1 + h.c

3
∑

l=e,µ,τ

ml

v
l̄ [S1 − tβS2 − iγ5tβS3] l

=
∑

l=e,µ,τ

ml tβ
v

l̄

[
h0

1

tβ
− (cχ − iγ5sχ)h0

2 − (sχ + iγ5cχ)h0
3

]
l (A.30)

where we used yl =
√

2ml/v cβ, and the last line is expressed in the physical basis in
the large tβ decoupling limit discussed earlier.

Combining the effective down-type quark FCNC given in (A.29) with the Higgs
lepton couplings in (A.30) and integrating out the Higgs degrees of freedom gives:

Heff =
ml tβ√

2v
(Zd)ij D̄iPRDj l̄l

[
(cχ − i sχ)cχ

M2
h0

2

+
(sχ + i cχ)sχ

M2
h0

3

]

+
ml tβ√

2v
(Zd)ij D̄iPRDj l̄γ5l

[
(cχ − i sχ)(−isχ)

M2
h0

2

+
(sχ + i cχ)(icχ)

M2
h0

3

]
+ h.c.

(A.31)

As we are assuming the large tβ decoupling regime we have that Mh0
2
≈ Mh0

3
and thus

in this limit

Heff =− ml tβ√
2vM2

H

(Zd)i3
[
D̄iPRb l̄l − D̄jPRb l̄γ5l

]

− ml tβ√
2vM2

H

(
Z†d

)
i3

[
D̄iPLb l̄l + D̄iPLb l̄γ5l

]
+ h.c, (A.32)

2Computationally they set g = 0 i.e. they turn off gauge interactions.
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where MH ≡Mh0
3
≈Mh0

2
. Comparing now with the low-energy effective Hamiltonian in

(6.7), we find

CS = −CP =
ml v

M2
H mb

√
2 π tβ
α

[(
Zd
)
i3

V ∗tqVtb

]
,

C ′S = +C ′P =
ml v

M2
H mb

√
2 π tβ
α

[(
Z†d
)
i3

V ∗tqVtb

]
. (A.33)

Thus independent of the type of 2HDM, |C(′)
S | ≈ |C

(′)
P | in the decoupling regime with large

tβ. Furthermore, any CP violating phase coming from Zd is common to both Wilson
coefficients and explicit CPV phases in the Higgs potential have no effect.

Minimal Flavour Violation

Minimal Flavour Violation (MFV) is a formalism that protects against any additional
flavour structure or CP violation beyond what is already present in the CKM matrix,
while still allowing additional, higher-dimensional, operators [209]. This is in contrast
to Constrained Minimal Flavour Violation, where only the existing SM operators are
allowed. MFV achieves its goal by insisting that the flavour symmetry group

SU(3)QL × SU(3)UR × SU(3)DR (A.34)

is only broken by the background values of auxiliary spurion fields YU and YD, which
transform as (3, 3̄, 1) and (3, 1, 3̄) under this group. The Yukawa terms in (A.26) are
then kept formally flavour group invariant as long as Xui and Xdi contain combinations
of YU and YD so that they too transform as (3, 3̄, 1) and (3, 1, 3̄), respectively. Then to
lowest order, O(Y 1), Xdi = cdiYD and Xui = cuiYU for arbitrary coefficients cdi, cui ∈ C.
This thus ensures that

Md ∝ YD ∝ Zd, (A.35)

and therefore no tree-level down-type quark FCNCs (and similarly for up-type quarks).

We are free to re-define YD ≡ Xd1 and YU ≡ Xu2, which then gives the expansion:

Xd2 = (ε0 + ε1YDY
†
D + ε2YUY

†
U + . . .)YD. (A.36)

We are further free to rotate the quark fields so that the background values of the
spurions are

YD = diag(ŷd, ŷs, ŷb) ≡ λ̂d, (A.37)

YU = V̂ † × diag(ŷd, ŷs, ŷb) ≡ V̂ †λ̂u, (A.38)

where the hat indicates contributions from ε
(′)
i 6= 0 e.g. in the limit ε

(′)
i = 0 we recover

V̂ = VCKM. The ε
(′)
i parameters are assumed to be small as they are normally taken to

represent the loop induced U(1)PQ breaking.
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In the large tβ limit, the smallness of the bottom quark relative to the top quark mass
is attributed to this vacuum expectation value ratio and thereby the bottom Yukawa
coupling can be ŷb = O(1). The remaining Yukawa couplings are, however, still negligi-
ble: ys/yb ∝ ms/mb. Thus

YDY
†
D ≈ diag(0, 0, ŷ2

b ),
(
YUY

†
U

)
ij
≈ y2

t V̂
∗

3iV̂3j. (A.39)

Defining

∆ ≡ 1

ŷ2
b

YDY
†
D, (λ̂FC)ij ≡

{
(YUY

†
U)ij : i 6= j

0 : i = j
(A.40)

we have to lowest order in the off-diagonal terms:

Xd2 =
(
ε0 + ε1∆ + ε2λ̂FC + ε3λ̂FC∆ + ε4∆λ̂FC

)
λ̂d. (A.41)

Now diagonalising the mass matrix for the down-type quark sector gives [209]

Zd =
1

sin β
[a0λFC + a1λFC∆ + a2∆λFC]λd, (A.42)

where a0, a1 and a2 depend on εi and tβ. For our purposes we only need:

a0 + a1 =
tβ
y2
t

[
ε2 + ε3

[1 + (ε0 + ε1)tβ] [1 + (ε0 + ε1 − ε2 − ε3)tβ]

]
. (A.43)

In the large tβ limit εitβ = O(1) is possible, and thus these FCNC couplings can be
sizable. However, processes such as s → d are now protected by the flavour structure,
as it resembles that of the SM.

Consider now the scalar coefficients C
(′)
S,P as given in (A.33) for the transition b →

q l+l− for q ∈ {d, s}. For q 6= b, we have q̄∆ = 0 as well as ∆b = b, such that

(Zd)i3 =
1

sin β
(a0 + a1)y2

t VtbV
∗
ti yb, (A.44)

(Z†d)i3 =
1

sin β
(a∗0 + a∗1)y2

t VtbV
∗
ti yq. (A.45)

This thereby gives

CS = −CP =
1

mb

√
2π

2M2
HGFα

yl yb y
2
t (a0 + a1)

=
2πml

M2
H α

t3β

[
ε2 + ε3

[1 + (ε0 + ε1)tβ] [1 + (ε0 + ε1 − ε2 − ε3)tβ]

]
, (A.46)

C ′S = +C ′P =
1

mb

√
2π

2M2
HGFα

yl yq y
2
t (a∗0 + a∗1)

=
mq

mb

2πml

M2
H α

t3β

[
ε∗2 + ε∗3

[1 + (ε∗0 + ε∗1)tβ] [1 + (ε∗0 + ε∗1 − ε∗2 − ε∗3)tβ]

]
, (A.47)

(A.48)
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in the decoupling regime with large tβ. We find C ′S = C ′P ≈ 0 in the limit mq/mb ≈ 0.
Note that the tβ scales with a third power.
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Lay summary

Particle Physics

The laws of physics, at least in principle, underpin all the observations we can make
about our world, and thereby also every field of science. To put it very simply, as
the cartoon below3 jokingly does, sociology is just applied psychology, psychology ap-
plied biology, biology applied biochemistry, biochemistry applied chemistry and, finally,
chemistry just applied physics:

And within the field of physics we may continue this reductionism. We are then even-
tually led to conclude that all natural phenomena, varying from the weather to the
firing of neurons within our brains, can be described in terms of interactions between
elementary particles. In practice this description relies heavily on mathematics, as the
cartoon also points out, but in this chapter we will spare the reader from these details.

An elementary particle is a building block of Nature that we currently believe to be
indivisible. For example, in our attempt to understand atoms we have discovered that
their nuclei are made of protons and neutrons, and that these, in turn, are composed of
particles called quarks. As quarks do an adequate job of describing subatomic physics
(we will say more about this later), they are an example of what we consider to be
elementary particles. Electrons, which bind to the atomic nuclei to complete an atom,
are another example.

3Taken from xkcd comics [220].
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Interactions between elementary particles are mediated by fundamental forces. We
currently know of four such forces. Namely, the electromagnetic force, the strong force,
the weak force and gravity. Interestingly, these forces can themselves be described
in terms of elementary particles, specifically so-called messenger particles. Messenger
particles essentially communicate to other particles whether they should attract or repel
each other. With respect to the fundamental forces just listed, the associated messenger
particles are the photon (responsible for visible light), the gluon, the W and Z bosons
and the graviton.

Of the four fundamental forces, the strong and weak nuclear forces are less familiar
from an everyday perspective. The strong force is responsible for binding the neutrons
and protons (or quarks to be more precise) of an atomic nucleus together. It is called
“strong” because at subatomic distances it is stronger than the competing electromag-
netic force that tries to push the (positively charged) protons in the nucleus apart. On
the other hand, the weak force is so named because the interactions it mediates are
relatively weak and seldom. Nonetheless, it is a very interesting force with important
physical consequences. One of its most relevant features for this thesis is that it allows
quarks to change a characteristic called their flavour, which we will come back to. A
possibly familiar example of the weak force in action is radioactive beta decay, which
is caused by a neutron decaying to a proton while releasing an energetic electron (the
beta particle) and a neutrino particle.

Our current understanding of particle physics is summed up by the aptly named
Standard Model. The Standard Model predicts how all of the known elementary particles
behave with respect to each of the fundamental forces (except for gravity4). This model
is almost 40 years old and continues to give accurate predictions for particle physics
experiments. The state of the art of such experiments is the Large Hadron Collider
(LHC) at CERN in Geneva. The LHC is a circular particle accelerator with a 27 km
circumference, which can collide protons at close to the speed of light. It began operating
in early 2010, and in 2012 it discovered5 what was considered the last missing piece of
the Standard Model: the Higgs boson. Although the Standard Model now appears
complete, it is not without shortcomings, some of which we will mention in the next
section. The LHC could therefore continue to play an important role by uncovering
new physical phenomena, which may help us to extend or replace the ageing Standard
Model.

4Einstein’s theory of general relativity describes gravitational interactions at long distances. It is
challenging, however, to incorporate gravity into the quantum mechanical framework of the Standard
Model, which is necessary for an understanding at short, subatomic, distances.

5Technically a particle with properties very similar to the Higgs boson was discovered. Further tests
are needed to confirm that it is certainly the Higgs boson.
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Stellar motivations

To point out some of the Standard Model’s shortcomings it is sufficient to point at
the sky. Given a sufficiently capable telescope, we would observe that the galaxies in
our universe are moving away from each other. This observation, that the universe is
expanding, is what motivated the popular big bang hypothesis for the beginning of the
universe. What is odd, however, is that the rate at which galaxies are currently moving
away from each other is not decelerating, as we would expect due to their gravitational
attraction, but accelerating! We call the source of this mysterious acceleration dark
energy, which accounts for 68% of the total energy budget of the universe6.

Next, if we take a closer look at these galaxies, we observe something else: the outer
stars that are in a stable orbit rotate too quickly with respect to the galaxy’s visible inner
matter (its other stars). For these rotational speeds to make sense, galaxies must contain
a significant amount of invisible matter, called dark matter. The best explanation for
this mysterious dark matter, which also agrees with calculations of how the universe
was formed, is that galaxies contain a cloud of tiny, very weakly interacting particles.
These dark matter particles are estimated to comprise 27% of the total universe energy
budget. However, none of the elementary particles described by the Standard Model
qualify.

The contribution of ordinary matter to the total energy budget of the universe, as
described by the Standard Model, is thus 5%. That the Standard Model only describes a
small fraction of our universe is clearly somewhat of a shortcoming for an otherwise very
successful model. Inadequacies such as these, among others, lead us to believe that the
model is incomplete. We suspect that if we continue to test it by colliding particles at
higher energies or making measurement with increasing precision, we must eventually
observe a deviation from its predictions. We refer in general to future physical phe-
nomena that will deviate from Standard Model predictions as New Physics. Outlining
strategies to hunt for New Physics is one of the main goals of this thesis.

Taking a closer look at the ordinary matter in the universe, with the 5% energy
budget, another mystery presents itself: why is it all made of matter and none of it of
antimatter? This question may seem odd at first because antimatter (not to be confused
with the dark matter we defined above) sounds like an exotic substance. However,
antimatter is actually perfectly normal stuff. Every matter particle is automatically
paired with an antimatter particle that has the same mass but opposite charge. The
electron, for example, is paired with the positron, a “positive” electron, which is used in
everyday things like medical PET (Positron Emission Tomography) scans. The catch is
that when a particle and an anti-particle meet, they annihilate each other and release
energy. For this reason it is clear why the Earth has only one kind of each stable particle,
and of course these are the ones we initially chose to label as matter. However, it could
just have easily been made out of stable antimatter particles.

6The total energy budget of the universe was recently updated by the new Planck sattelite re-
sults [221].
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So the Earth is made of matter, but the strange thing is that every galaxy we observe
in our universe also appears to be. We would expect that at the beginning of a neutral
universe, during the big bang, matter and antimatter were created in equal amounts. So
it is a mystery how the antimatter disappeared while matter stuck around. The laws of
physics seem to have shown a bias towards matter over antimatter during the evolution
of the universe.

In 1967 the Soviet physicist Andrei Sakharov published a paper discussing the con-
ditions that must have been present during the evolution of the universe to explain the
current matter–antimatter asymmetry. One requirement is that certain symmetries of
the laws of physics, which used to be taken for granted, must be broken. As we will
soon explain, it turns out that in the Standard Model these symmetries are in indeed
broken. However, they are not broken “enough” to explain the huge difference between
matter and antimatter we see today. Therefore our quest for New Physics also includes
a quest for symmetry violation.

Symmetry violation and mesons

According to Sakharov, two symmetries of Nature that must be broken in order to
explain the matter–antimatter asymmetry of the universe are Charge symmetry (C)
and the combination of charge symmetry with Parity symmetry (P), known as CP
symmetry. Charge symmetry intuitively states that if we flip the charges of all particles,
for instance make electrons positive and positrons negative, the laws of physics describing
their interactions stay the same. Parity symmetry, on the other hand, requires the same
laws of physics to hold after flipping every spatial direction. Essentially parity symmetry
states that a physical process viewed through a mirror should still behave like a valid
physical process.

The charge and parity symmetries seem intuitive, and they are respected by almost
all of the fundamental forces. The only exception is the weak force, which violates both
symmetries separately and, as it turns out, also their combination: CP symmetry. Thus,
as far as we currently know, it is the weak force that is responsible for Nature’s bias for
matter versus antimatter.

In the Standard Model it is specifically the interaction of quarks via the weak force
that violates CP symmetry. As we already mentioned above, quarks are the elementary
building blocks of composite particles called hadrons, such as neutrons and protons, and
they come in different flavours. There are six flavours in total, and these are labeled up,
down, strange, charm, beauty7 and top. Neutrons and protons, for instance, are made
from up and down quarks, the two lightest flavours. They are examples of a subgroup of
hadrons called baryons, each consisting of three quarks. It is also possible for a quark to
bind together with an antiquark, due to the strong force, to form a composite particle
called a meson. Mesons are all unstable and decay quickly, but by studying their decays
we can learn a lot about quark interactions.

7The beauty quark is also called the bottom quark.
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The unique feature of the weak force is that it allows a quark of one flavour to
change into another. Furthermore, CP symmetry can be violated if, loosely speaking,
the chance8 that a beauty quark transforms into an up quark is not identical to the
chance that a beauty antiquark transforms into an up antiquark, for example. Due to
the strength of the strong force, however, it is impossible to isolate individual quarks
to study them independently. Therefore, as we just mentioned, we can instead study
such flavour–changing quark interactions indirectly by observing the transformations
and decays of composite meson particles.

Mesons can be studied using particle detector experiments, like the LHC at CERN.
By comparing the behaviour of mesons with anti-mesons we can probe how CP symmetry
is violated in the underlying quark processes. Furthermore, by measuring such processes
very precisely, we can also make a comparison with what the Standard Model predicts
to occur. In this way we can probe New Physics. Specifically, the quantum mechanical
nature of these processes allows heavy, as of yet undiscovered, new particles to contribute
in a subtle way. In order to discover them, however, we need both precise experimental
measurements and precise theoretical predictions.

Strange beauty mesons

Certain pairs of neutral mesons can transform into each other before they decay due to a
phenomenon called mixing. The violation of CP symmetry was in fact first discovered in
1964 due to the mixing of neutral kaons, which are mesons made from combinations of
down and strange quarks. The amount of violation observed was, however, very small.
It was later discovered that mesons that contain a beauty quark exhibit much more CP
symmetry violation, both in their mixing and their decay. In the previous decade neutral
mesons comprised of a beauty quark together with a down quark, or an up quark for
charged beauty mesons, were extensively studied at particle detectors called B–factories.
This greatly helped in building a picture of the amount of CP symmetry violation
present in the Standard Model. Unfortunately, as we already mentioned earlier, this is
not enough to solve the matter–antimatter asymmetry puzzle present in our universe.

When the LHC started up in 2010, and coincidently also this thesis, mesons com-
posed of a beauty quark together with a strange quark, “strange beauty mesons”, had
not been extensively studied. Since then the particle detectors at the LHC, namely
LHCb, ATLAS and CMS, have begun to sharpen this picture. It is therefore con-
ceivable that we will see evidence for New Physics, in the form of new CP symmetry
violation or new particles, in the near future. Consequently, the theoretical analysis of
these particles is very relevant, because in order to see a deviation from the Standard
Model we first require precise theoretical predictions.

8We are actually referring here to the coupling strength of these two quarks. The “chance” of this
process occurring is the magnitude squared of the coupling strength. CP violation manifests itself as a
complex coupling strength, so it is only observable if there is interference between multiple couplings
present.
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The combination of a beauty antiquark with a strange quark is denoted by Bs and
a beauty quark with a strange antiquark as Bs. Because both of these particles are
neutral they can mix into each other as we mentioned above. Such mixing transitions
are typically depicted by Feynman diagrams, which we use extensively throughout this
thesis. Here is an example Feynman diagram showing the mixing of a Bs meson into a
Bs meson:
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Note in particular that the W bosons, the messenger particles of the weak force, are
responsible for mediating such a transition in the Standard Model. In models of New
Physics also other particles can contribute to this mixing.

The Bs and Bs can be considered each other’s anti-particles. One way to study
CP symmetry violation is to identify decay processes beginning with one or the other
and comparing their results for differences. From an experimental perspective this act
of distinguishing between the so-called flavour states, Bs and Bs, is known as flavour
tagging. Measurements involving this technique can be very sensitive to New Physics.
However, the technique is challenging and as a result it only works for a small fraction
of events.

A key focus of this thesis is how to search for New Physics using results from experi-
mental measurements that did not rely on flavour tagging. To this end, we can describe
the Bs and Bs mesons in a different formalism in which they do not mix with each other.
In this other formalism the particles are labeled by their relative masses, Bs,H and Bs,L

for the heavier and lighter one, respectively, and are referred to as mass-eigenstates.
Because the particles described in this way do not mix, it is possible to define a lifetime
for each particle, which is the duration it lives on average before it decays (about a tril-
lionth of a second). What is special about the strange beauty meson system is that the
lifetimes of the two particles differ by a small amount. An experiment can in principle
hereby distinguish between the two mass-eigenstates, which can also offer a sensitive
probe of New Physics. Typically an experiment measures a single effective lifetime for
a given strange beauty meson decay, from which interesting physical information has to
be decoded.

Strategies to hunt for New Physics

The goal of this thesis is to hunt for New Physics using strange beauty meson decays.
We have chosen to focus on these mesons because the underlying quark transitions that
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mediate their decays may reveal new CP symmetry violation or give indirect evidence
for the existence of new particles. Furthermore, such decays are currently being probed
by the LHC experiment at CERN. Currently no large signals of New Physics have been
observed, but as the experimental precision improves in the years to come we may very
well discover smaller signals. In order to be able to identify such signals as New Physics,
it is important to have a precise theoretical understanding of what is being measured.
In this thesis we discuss strategies for combining experimental measurements in such a
way as to minimise the theoretical uncertainty, and thereby maximise our sensitivity to
New Physics.

Our ability to theoretically describe the binding of quarks inside a meson due to
the nuclear strong force is not perfect. Specifically, although various calculational tools
have been developed to this end, their estimates typically have a sizable theoretical
uncertainty. To minimise our dependence on this uncertainty, our strategies typically
make use of an approximate symmetry of the strong force called flavour symmetry.
This symmetry essentially states that the three lightest quark flavours – up, down and
strange – are approximately indistinguishable from the perspective of the strong force’s
messenger particles. It thereby allows us to relate different meson decay processes to
each other, using experimental measurements from one to fix uncertain parameters in
another.

One way to search for New Physics is to test if the violation of CP symmetry pre-
dicted by the Standard Model is consistent, particularly the lesser constrained corners9

of this model. We have proposed strategies to do this using several different strange
beauty meson decays. In particular we have chosen decays that can be related by flavour
symmetry to other meson decays, such as those already studied by the B–factories as
we mentioned earlier. We have found that effective lifetime measurements can be par-
ticularly useful in these strategies. Once sufficiently precise experimental data becomes
available our strategies should be competitive with existing strategies, and can thereby
complement the hunt for new sources of CP symmetry violation.

Another way to search for New Physics is by looking at strange beauty meson decays
that the Standard Model predicts to be very rare. A notable example is their decay to
two muons, which is predicted to occur only one in 300 million times. On the other
hand, in some models of New Physics the chance of this decay occuring is predicted
to be far higher. This makes measuring the decay rate a priority for experiments at
the LHC. A recent measurement has ruled out a large New Physics signal, however
a smaller signal could still be present. In this thesis we have discussed an important
correction to the theoretical calculation of this decay rate. We have also highlighted the
usefulness of measuring the effective lifetime for this decay, which is sensitive to different
New Physics features.

9These “corners” are actually the “angles” of triangles in the complex plane that describe the
unitarity of quark flavour changing transitions. See Chapter 3 for further details.
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Nederlandse samenvatting

Titel vertaling:

Strategieën voor de Jacht op Nieuwe Fysica
met Strange Beauty Mesonen

Deeltjesfysica

De wetten van de natuur onderbouwen, althans in principe, alle observaties die we
kunnen maken van onze wereld, en daardoor ook elk gebied van de wetenschap. Simpel
gezegd, zoals de bijgaande illustratie10 dat als grap doet, is sociologie gewoon toegepaste
psychologie, psychologie toegepaste biologie, biologie toegepaste biochemie, biochemie
toegepaste chemie en, ten slotte, chemie gewoon toegepaste fysica:

Binnen de fysica kunnen we verder gaan met dit reductionisme. Uiteindelijk kunnen we
concluderen dat alle natuurlijke fenomenen, zo gevarieerd als het weer tot het afvuren
van neuronen in onze hersenen, omschreven kunnen worden door interacties tussen
elementaire deeltjes. In de praktijk is deze beschrijving gebaseerd op wiskunde, wat ook
duidelijk wordt gemaakt in de illustratie, maar in dit hoofdstuk zullen we de lezer deze
bijzonderheden besparen.

10Genomen van xckd comics [220].
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Een elementair deeltje is een bouwsteen van de natuur waarvan we momenteel gelo-
ven dat die ondeelbaar is. We hebben bijvoorbeeld ontdekt dat atomen uit protonen en
neutronen bestaan, en dat deze deeltjes op hun beurt weer van quark deeltjes gemaakt
zijn. Omdat quarks tot nu toe een goede omschrijving van subatomaire fysica weergeven
(hier komen we later op terug), beschouwen we ze als elementaire deeltjes. Elektronen,
die zich aan een atoomkern binden om deze compleet te maken, zijn ook een voorbeeld.

Interacties tussen elementaire deeltjes worden veroorzaakt door fundamentele krach-
ten. We kennen op dit moment vier van dit soort krachten. Namelijk de elektromag-
netische kracht, de sterke kernkracht, de zwakke kernkracht en de zwaartekracht. Deze
krachten kunnen zelf ook beschreven worden door elementaire deeltjes die boodschapper-
deeltjes heten. Boodschapperdeeltjes communiceren aan andere deeltjes dat ze elkaar
afstoten of aantrekken. Ten opzichte van de net genoemde fundamentele krachten zijn
de boodschapperdeeltjes het foton (verantwoordelijk voor zichtbaar licht), het gluon, de
W en Z bosonen en het graviton.

Van de vier fundamentele krachten zijn de sterke en zwakke kernkrachten het minst
bekend vanuit ons alledaagse perspectief. De sterke kernkracht is verantwoordelijk voor
het samenbinden van neutronen en protonen (of quarks om precies te zijn) in een atoom-
kern. Hij wordt “sterk” genoemd, want op subatomaire afstanden is deze veel sterker
dan de concurrerende elektromagnetische kracht die probeert de (positief geladen) pro-
tonen in de atoomkern van elkaar weg te duwen. Anderzijds is de zwakke kernkracht zo
genoemd omdat de interacties die deze overbrengt relatief zwak en zeldzaam zijn. Toch
is de zwakke kracht een interessante kracht met belangrijke consequenties. Eén van de
meer relevante functies voor dit proefschrift is dat de zwakke kracht het mogelijk maakt
voor quarks om een eigenschap te veranderen die smaak heet. Hier komen we later op
terug. Een voorbeeld van de zwakke kernkracht in actie is radioactief bètaverval, dat
ontstaat door het verval van een neutron naar een proton waarbij een hoog-energetisch
elektron (het bètadeeltje) en een neutrino worden uitgestraald.

Ons huidige begrip van de deeltjesfysica is samengevat in het treffend genoemde
Standaard Model. Het Standaard Model voorspelt hoe alle bekende elementaire deeltjes
zich gedragen ten opzichte van elke fundamentele kracht (behalve de zwaartekracht11).
Het model is bijna 40 jaar oud en het blijft nog altijd nauwkeurige voorspellingen geven
voor deeltjesfysica experimenten. De state of the art van zulke experimenten is de Large
Hadron Collider (LHC), letterlijk de Grote Hadronen-Botser, te CERN in Genève. Deze
deeltjesversneller, in de vorm van een cirkel met een omtrek van 27 km, kan protonen
laten botsen met snelheden die dichtbij de lichtsnelheid liggen. De eerste experimentele
botsingen zijn begin 2010 van start gegaan, en in 2012 werd het Higgs boson gevonden12,
wat wordt beschouwd als het laatst missend stukje van het Standaard Model. Hoewel het
Standaard Model nu compleet lijkt, is het niet zonder tekortkomingen. In de volgende

11Einsteins algemene relativiteitstheorie beschrijft gravitationele interacties op lange afstanden. Het
blijft een uitdaging om zwaartekracht samen te voegen met de kwantummechanische formulering van
het Standaard Model, wat nodig is om de zwaartekracht op korte, subatomaire, afstanden te begrijpen.

12Om preciezer te zijn is er een deeltje ontdekt dat heel erg op het Higgs boson lijkt. Verdere testen
zijn nodig om vast te stellen dat het echt het Higgs boson is.
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sectie zullen we hiervan enkele voorbeelden geven. Bij het zoeken naar nieuwe fysische
verschijnselen blijft de LHC een belangrijke rol spelen, en kan het meehelpen om het
verouderende Standaard Model uit te breiden of zelfs te vervangen.

Astronomische motivaties

Om sommige van de tekortkomingen van het Standaard Model te bekijken is het vol-
doende om naar de hemel te kijken. Met een nauwkeurige telescoop zien we dat de
sterrenstelsels in ons universum van elkaar weg bewegen. Deze waarneming van een
uitdijend heelal heeft de populaire oerknalhypothese gemotiveerd. Wat echter vreemd
is, is dat de snelheid waarmee sterrenstelsels uit elkaar bewegen niet kleiner wordt, zo-
als wij dat zouden verwachten als gevolg van de zwaartekracht, maar juist toeneemt!
We noemen de bron van deze mysterieuze versnelling donkere energie, die 68% van het
totale energiebudget van het universum inneemt13.

Als we vervolgens nog beter naar de sterrenstelsels zelf kijken, observeren we iets
anders: de sterren die in een stabiele baan aan de buitenkant van het sterrenstelsel rond-
draaien gaan te snel ten opzichte van de zichtbare interne materie (de andere sterren).
Om deze rotatiesnelheden te verklaren is het nodig dat sterrenstelsels een significante
hoeveelheid onzichtbare materie bevatten: donkere materie. De beste uitleg voor deze
mysterieuze donkere materie, die ook de berekeningen van hoe het universum gevormd
is kan verklaren, is dat een sterrenstelsel een wolk van kleine deeltjes met zwakke in-
teracties bevat. Geschat is dat deze donkere materie een bijdrage levert van 27% aan
het totale energiebudget van het universum. Hier komt geen enkele van de elementaire
deeltjes omschreven in het Standaard Model voor in aanmerking.

De uiteindelijke bijdrage van normale materie aan het totale energiebudget van het
universum, zoals beschreven door het Standaard Model, is dus 5%. Dat het Standaard
Model slechts een kleine fractie van ons universum omschrijft is duidelijk een tekortko-
ming voor een anders heel succesvol model. Onder andere tekortkomingen zoals deze
leidt ons tot de conclusie dat het model incompleet is. We verwachten daarom dat als
we doorgaan met testen, door deeltjes te botsen met hogere energieën of door metingen
te maken met toenemende precisie, dat we uiteindelijk een afwijking zullen zien van de
voorspellingen van dit model. In het algemeen noemen wij toekomstige fysische ver-
schijnselen die zouden afwijken van de voorspellingen van het Standaard Model Nieuwe
Fysica. Het benoemen van strategieën om op Nieuwe Fysica te jagen is één van de
hoofddoelen van dit proefschrift.

Als we de normale materie in het universum, met 5% van het totale energiebudget,
nader bekijken, is er nog een mysterie: waarom bestaat het allemaal uit materie en
niet uit antimaterie? Deze vraag klinkt misschien vreemd, want antimaterie (niet te
verwarren met de donkere materie die we net gedefinieerd hebben) klinkt exotisch. Maar
eigenlijk is antimaterie volkomen normaal. Elk materiedeeltje is automatisch gepaard

13Het totale energiebudget van het universum is recentelijk bijgewerkt door de resultaten van de
nieuwe Planck satelliet [221].
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met een antimaterie deeltje dat dezelfde massa heeft maar tegenovergestelde lading. Het
elektron, bijvoorbeeld, is gepaard met het positron, een “positief” elektron, dat gebruikt
wordt in alledaagse dingen zoals medische PET (Positron Emissie Tomografie) scans.
Als een deeltje zijn antideeltje tegen komt vernietigen ze elkaar en komt er energie vrij.
Daarom is het duidelijk waarom de aarde maar één soort van elk stabiel deeltje heeft, en
deze hebben we oorspronkelijk gekozen om materie te noemen. Evenwel zou de aarde
ook uit stabiele antimaterie deeltjes kunnen bestaan.

De aarde is dus uit materie gemaakt, maar wat vreemd is is dat elk sterrenstelsel
wat we kunnen observeren in ons universum dat ook is. We vermoeden dat tijdens het
begin van een neutraal universum, net na de oerknal, materie en antimaterie in gelijke
hoeveelheden gecreëerd zijn. Daarom is het een mysterie hoe de antimaterie verdwenen
is terwijl de materie gebleven is. De fysische wetten lijken een voorkeur te hebben gehad
voor materie tegenover antimaterie tijden de evolutie van ons universum.

In 1967 heeft de Sovjet-natuurkundige Andrei Sakharov een artikel gepubliceerd
waarin hij de condities omschrijft die nodig waren tijdens de evolutie van het universum
om te verklaren hoe de materie–antimaterie asymmetrie ontstaan is. Eén voorwaarde
is dat bepaalde symmetrieën van de natuur wetten, die eerst vanzelfsprekend leken,
gebroken zijn. Zoals we straks zullen uitleggen, blijkt het dat in het Standaard Model
deze symmetrieën inderdaad gebroken zijn. Echter, deze symmetrieën zijn niet “genoeg”
gebroken om het enorme verschil tussen materie en antimaterie dat we vandaag zien
te verklaren. Daarom is onze zoektocht naar Nieuwe Fysica ook een zoektocht naar
symmetrieschending.

Symmetrie schending en mesonen

Volgens Sakharov zijn er twee symmetrieën van de Natuur die gebroken moeten zijn
om de materie–antimaterie asymmetrie van het heelal te verklaren Charge (Lading)
symmetrie (C) en de combinatie van ladingssymmetrie met pariteitssymmetrie (P), die
CP-symmetrie is genoemd. Ladingssymmetrie is de intüıtieve gedachte dat als we de
lading van alle deeltjes zouden omkeren, bijvoorbeeld elektronen positief maken en posi-
tronen negatief, de wetten van de fysica die hun interacties omschrijven hetzelfde zouden
blijven. Pariteitssymmetrie, anderzijds, vereist dat de wetten van de fysica nog steeds
gelden nadat elke ruimtelijke richting omgekeerd is. In feite stelt pariteitssymmetrie dat
een fysisch proces gezien door een spiegel zich nog steeds als een geldig fysisch proces
gedraagt.

De ladings- en pariteitssymmetrieën zijn intüıtief, en worden nageleefd door bijna
alle fundamentele krachten. De enige uitzondering is de zwakke kernkracht, die ze allebei
apart schendt, en ook hun combinatie: CP-symmetrie. Dus, voor zover we nu weten, is
het de zwakke kernkracht die verantwoordelijk is voor de partijdigheid van de Natuur
voor materie over antimaterie.

In het Standaard Model zijn het specifiek de interacties van quarks via de zwakke
kracht die CP-symmetrie schenden. Zoals eerder vermeld zijn quarks de elementaire
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bouwstenen van samengestelde deeltjes die hadronen heten, zoals neutronen en proto-
nen, en komen quarks in verschillende smaken. Er zijn zes smaken in totaal, die up,
down, strange, charm, beauty14 en top genoemd worden. Neutronen en protonen zijn bij-
voorbeeld samengesteld uit up en down quarks, de twee lichtste smaken. Ze behoren tot
een subgroep van hadronen die baryonen heten: hadronen die uit drie quarks bestaan.
Het is ook mogelijk dat een quark en een antiquark samenbinden door de sterke kracht;
deze samengestelde deeltjes worden mesonen genoemd. Alle mesonen zijn instabiel en
vervallen snel naar andere deeltjes, maar door deze vervallen te bestuderen kunnen we
veel leren over quark interacties.

De unieke eigenschap van de zwakke kernkracht is dat het de smaak van een quark
kan veranderen. Bovendien kan CP-symmetrie geschonden worden als bijvoorbeeld,
losjes geformuleerd, de kans15 dat een beauty quark transformeert in een up quark niet
identiek is aan de kans dat een beauty antiquark transformeert in een up antiquark.
Echter, door de sterkte van interactie van de sterke kernkracht is het niet mogelijk om
individuele quarks te isoleren zodat we die zouden kunnen bestuderen. In plaat hiervan
kunnen we wel zulke smaak–veranderende quark interacties indirect bestuderen door
transformaties en vervallen van samengestelde mesondeeltjes waar te nemen.

We kunnen mesonen bestuderen door gebruik te maken van deeltjesdetectoren, zoals
de LHC te CERN. Door het gedrag van mesonen te vergelijken met die van anti-
mesonen kunnen we onderzoeken hoe CP-symmetrie is geschonden in de onderliggende
quark processen. Bovendien, door zulke processen heel precies te meten, kunnen we
ook een vergelijking maken met de voorspellingen van het Standaard Model. Zodoende
kunnen we Nieuwe Fysica onderzoeken. Om precies te zijn, de kwantummechanische
aard van deze processen laat zware, tot op heden onontdekte, nieuwe deeltjes mee doen
op subtiele manieren. Maar om ze te ontdekken hebben we zowel precieze experimentele
metingen als precieze theoretische voorspellingen nodig.

Strange beauty mesonen

Bepaalde paren van neutrale mesonen kunnen in elkaar transformeren voordat ze ver-
vallen door middel van een verschijnsel dat mixing wordt genoemd. De schending van
CP-symmetrie is in feite ontdekt in 1964 door de mixing van neutrale kaons (mesonen die
samengesteld zijn uit down en strange quarks). De waargenomen hoeveelheid schending
was echter erg klein. Later werd ontdekt dat mesonen die een beauty quark bevatten
veel meer CP-symmetrie schending vertonen, in hun mixing en in hun verval. In het
vorige decennium zijn neutrale mesonen die zijn samengesteld uit een beauty quark
met een down quark, of met een up quark in het geval van geladen beauty mesonen,

14Het beauty quark wordt ook wel het bottom quark genoemd.
15We hebben het hier eigenlijk over sterkte van de koppeling tussen deze twee quarks. De “kans”

dat dit proces plaats vindt is de grootte in het kwadraat van de koppelingssterkte. CP-schending uit
zich als een complexe koppelingssterkte, en is dus alleen waarneembaar als er een interferentie is tussen
meerdere koppelingen.
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uitgebreid bestudeerd bij zogenoemde B–fabriek deeltjesdetectoren. Dit heeft ons zeer
geholpen in het geven van een beeld van de hoeveelheid CP symmetrie schending in het
Standaard Model. Helaas, zoals we al eerder aangegeven hadden, is dit niet voldoende
om de puzzel van de materie–antimaterie asymmetrie in ons universum op te lossen.

Toen de LHC begon in 2010, en toevallig ook dit proefschrift, waren mesonen die sa-
mengesteld zijn uit een beauty quark met een strange quark, “strange beauty mesonen”,
nog niet uitgebreid bestudeerd. Sindsdien zijn de deeltjesdetectoren bij de LHC, name-
lijk LHCb, ATLAS en CMS, begonnen met dit beeld scherper te stellen. Het is daarom
aannemelijk dat we bewijzen van Nieuwe Fysica, in de vorm van nieuwe CP-symmetrie
schending of nieuwe deeltjes, kunnen zien in de nabije toekomst. Bijgevolg is de theore-
tische analyse van deze deeltjes erg relevant, want om een afwijking van het Standaard
Model te kunnen waarnemen hebben we eerst precieze theoretische voorspellingen nodig.

De combinatie van een beauty antiquark met een strange quark wordt aangeduid
met het symbool Bs en een beauty quark met een strange antiquark met Bs. Omdat
beide van deze deeltjes neutraal zijn kunnen ze door mixing in elkaar transformeren,
zoals we al eerder hebben opgemerkt. Zulke mixing overgangen worden vaak uitgebeeld
door middel van Feynman diagrammen, waarvan we uitgebreid gebruik maken in dit
proefschrift. Bijgaand een voorbeeld van een Feynman diagram dat de mixing overgang
van een Bs meson naar een Bs meson voorstelt:
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anti- quark

quark

boson W
boson

Quarks en anti- quarks
tijdelijke "top" quarks

sB

omgekeerd!

Merk op dat W bosonen, de boodschapper deeltjes van de zwakke kracht, deze overgang
bemiddelen in het Standaard Model. In modellen van Nieuwe Fysica kunnen ook andere
deeltjes bijdragen aan deze mixing.

De Bs en Bs kunnen worden beschouwd als elkaars antideeltjes. Een manier om
CP-symmetrie schending te studeren is om vervalprocessen te identificeren die beginnen
met de een of met de ander en de resultaten te vergelijken. Vanuit een experimenteel
perspectief heet het onderscheiden van deze zogenoemde smaaktoestanden, Bs en Bs,
flavour tagging. Metingen die gebruik maken van deze techniek kunnen zeer gevoelig
zijn voor Nieuwe Fysica. Maar het gebruiken van deze techniek is tegelijkertijd een
uitdaging en daarom lukt het maar voor een kleine fractie van gebeurtenissen.

Een belangrijk aandachtspunt van dit proefschrift is hoe wij naar Nieuwe Fysica
kunnen zoeken met experimentele metingen die niet afhankelijk van smaak tagging zijn.
We kunnen de Bs en Bs mesonen omschrijven met een ander formalisme waarin ze
niet met elkaar mixen. In dit formalisme worden de deeltjes gelabeld door hun relatieve
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massa, Bs,H en Bs,L voor de zwaardere (heavy) en lichtere (light) deeltjes, respectievelijk,
en worden ze massa-eigenstaten genoemd. Doordat de deeltjes in deze omschrijving niet
mixen, is het mogelijk om een levensduur te definiëren voor elk deeltje, dat wil zeggen
de gemiddelde tijd dat het deeltje leeft voordat het vervalt (ongeveer een biljoenste
van een seconde). Wat het strange beauty meson systeem special maakt is dat er een
klein verschil is tussen de levensduur van de twee individuele deeltjes. Een experiment
kan in principe hierdoor de twee massa-eigenstaten onderscheiden, een techniek die ook
gevoelig kan zijn voor Nieuwe Fysica. Normaal gesproken meet een experiment een
enkele effectieve levensduur van een strange beauty meson verval, waaruit interessante
fysische informatie gedecodeerd kan worden.

Strategieën voor de jacht op Nieuwe Fysica

Het doel van dit proefschrift is om op Nieuwe Fysica te jagen met strange beauty meson
vervallen. We hebben gekozen om ons op deze mesonen te richten omdat de onderlig-
gende quark overgangen die de vervallen bemiddelen misschien nieuwe CP-symmetrie
schending kunnen blootleggen, of indirect bewijs kunnen leveren voor het bestaan van
nieuwe deeltjes. Bovendien worden zulke vervallen momenteel onderzocht door het LHC
experiment te CERN. Tot nu toe zijn er geen grote signalen van Nieuwe Fysica waar-
genomen, maar omdat de experimentele nauwkeurigheid zal verbeteren in de komende
jaren zullen we steeds kleinere signalen kunnen ontdekken. Om dit soort signalen te
kunnen identificeren als Nieuwe Fysica, is het belangrijk om een nauwkeurig theoreti-
sche begrip te hebben van wat gemeten wordt. In dit proefschrift bespreken we stra-
tegieën voor het zodanig combineren van experimentele metingen dat de theoretische
onzekerheid wordt geminimaliseerd, en zodoende de gevoeligheid voor Nieuwe Fysica
gemaximaliseerd.

Ons vermogen om het binden van quarks binnen een meson theoretisch te beschrij-
ven is nog niet perfect. Hoewel er diverse wiskundige methodes zijn ontwikkeld die
hierbij helpen, hebben schattingen die hieruit volgen typisch een aanzienlijke theore-
tische onzekerheid. Om onze afhankelijkheid van deze onzekerheden te minimaliseren,
maken onze strategieën veelvuldig gebruik van een benaderende symmetrie van de sterke
kracht die smaaksymmetrie heet. Deze symmetrie zegt in feite dat de drie lichtste quark
smaken – up, down en strange – ononderscheidbaar zijn vanuit het perspectief van de
boodschapper deeltjes van de sterke kracht. We kunnen daarom verschillende meson
vervalprocessen relateren aan elkaar, waarbij we experimentele metingen van de één
kunnen gebruiken om onzekere parameters van de ander vast te stellen.

Een manier om naar Nieuwe Fysica te zoeken is te testen of de schending van CP-
symmetrie die voorspeld is door het Standaard Model consequent is, vooral met betrek-
king tot de minder nauwkeurig bepaalde hoeken16 van dit model. We hebben strategieën
voorgesteld om dit te bewerkstelligen met strange beauty meson vervallen. In het bij-

16Deze “hoeken” zijn werkelijk hoeken van driehoeken in het complexe vlak die de unitariteit van de
quark smaak overgangen omschrijven. Zie Hoofdstuk 3 voor verdere details.
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zonder hebben we gekozen voor vervallen die we kunnen relateren aan andere meson
vervallen door middel van de smaaksymmetrie, zoals vervallen die al met de B-fabrieken
gemeten zijn. We hebben gevonden dat metingen van de effectieve levensduur bijzonder
nuttig kunnen zijn voor deze strategieën. Als de nauwkeurigheid van de beschikbare
experimentele data eenmaal voldoende is zullen onze strategieën concurrerend zijn met
de huidige strategieën, en kunnen deze de jacht naar nieuwe bronnen van CP-symmetrie
schending aanvullen.

Een andere manier om naar Nieuwe Fysica te zoeken is om naar vervallen van strange
beauty mesonen te kijken die volgens de voorspelling van het Standaard Model zeer
zeldzaam zijn. Een opmerkelijk voorbeeld is hun verval naar twee muonen, waar de
voorspelling is dat dit maar eens in de 300 miljoen keer voorkomt. Daarentegen is de kans
dat dit verval voorkomt veel groter in sommige modellen van Nieuwe Fysica. Daarom
is de meting van de vervalsnelheid een prioriteit voor de experimenten van de LHC.
Een recente meting heeft een groot Nieuwe Fysica signaal uitgesloten, maar een kleiner
signaal kan nog aanwezig zijn. In dit proefschrift hebben we een belangrijke correctie
voor de theoretische berekening van de vervalsnelheid gepresenteerd. We hebben ook
de bruikbaarheid van de effectieve levensduur voor dit verval gedemonstreerd, welke
gevoelig is voor verschillende kenmerken van Nieuwe Fysica.
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